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Foreword

The National Curriculum Framework, 2005, recommends that children’s life at school
must be linked to their life outside the school. This principle marks a departure from
the legacy of bookish learning which continues to shape our system and causes a gap
between the school, home and community. The syllabi and textbooks developed on
the basis of NCF signify an attempt to implement this basic idea. They also attempt to
discourage rote learning and the maintenance of sharp boundaries between different
subject areas. We hope these measures will take us significantly further in the direction
of a child-centred system of education outlined in the National Policy on Education
(1986).

The success of this effort depends on the steps that school principals and teachers
will take to encourage children to reflect on their own learning and to pursue imaginative
activities and questions. We must recognise that, given space, time and freedom,
children generate new knowledge by engaging with the information passed on to them
by adults. Treating the prescribed textbook as the sole basis of examination is one of
the key reasons why other resources and sites of learning are ignored. Inculcating
creativity and initiative is possible if we perceive and treat children as participants in
learning, not as receivers of a fixed body of knowledge.

These aims imply considerable change in school routines and mode of functioning.
Flexibility in the daily time-table is as necessary as rigour in implementing the annual
calendar so that the required number of teaching days are actually devoted to teaching.
The methods used for teaching and evaluation will also determine how effective this
textbook proves for making children’s life at school a happy experience, rather than a
source of stress or boredom. Syllabus designers have tried to address the problem of
curricular burden by restructuring and reorienting knowledge at different stages with
greater consideration for child psychology and the time available for teaching. The
textbook attempts to enhance this endeavour by giving higher priority and space to
opportunities for contemplation and wondering, discussion in small groups, and

activities requiring hands-on experience.
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NCERT appreciates the hard work done by the textbook development committee
responsible for this book. We wish to thank the Chairperson of the advisory group in
Science and Mathematics, Professor J. V. Narlikar and the Chief Advisor for this book,
Professor P.K. Jain for guiding the work of this committee. Several teachers contributed
to the development of this textbook; we are grateful to their principals for making this
possible. We are indebted to the institutions and organisations which have generously
permitted us to draw upon their resources, material and personnel. As an organisation
committed to systemic reform and continuous improvement in the quality of its
products, NCERT welcomes comments and suggestions which will enable us to
undertake further revision and refinement.

Director
New Delhi National Council of Educational
20 December 2005 Research and Training



Preface

The National Council of Educational Research and Training (NCERT) had constituted
21 Focus Groups on Teaching of various subjects related to School Education, to
review the National Curriculum Framework for School Education - 2000 (NCFSE -
2000) in face of new emer ging challenges and transformations occurring in the fields
of content and pedagogy under the contexts of National and International spectrum of
school education. These Focus Groups made general and specific comments in their
respective areas. Consequently, based on these reports of Focus Groups, National
Curriculum Framework (NCF)-2005 was developed.

NCERT designed the new syllabi and constituted Textbook Development Teams

for Classes XI and XII to prepare textbooks in mathematics under the new guidelines
and new syllabi. The textbook for Class XI is already in use, which was brought in
2005.
The first draft of the present book (Class XII) was prepared by the team consisting of
NCERT faculty, experts and practicing teachers. The draft was refined by the
development team in different meetings. This draft of the book was exposed to a
group of practicing teachers teaching mathematics at higher secondary stage in different
parts of the country, in a review workshop organised by the NCERT at Delhi. The
teachers made useful comments and suggestions which were incorporated in the draft
textbook. The draft textbook was finalised by an editorial board constituted out of
the development team. Finally, the Advisory Group in Science and Mathematics and
the Monitoring Committee constituted by the HRD Ministry, Government of India
have approved the draft of the textbook.

In the fitness of things, let us cite some of the essential features dominating the
textbook. These characteristics have reflections in almost all the chapters. The existing
textbook contain 13 main chapters and two appendices. Each Chapter contain the
followings:

= Introduction: Highlighting the importance of the topic; connection with earlier

studied topics; brief mention about the new concepts to be discussed in the
chapter.

= QOrganisation of chapter into sections comprising one or more concepts/sub
concepts.

= Motivating and introducing the concepts/sub concepts. [llustrations have been
provided wherever possible.
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= Proofs/problem solving involving deductive or inductive reasoning, multiplicity
of approaches wherever possible have been inducted.

= Geometric viewing/ visualisation of concepts have been emphasised whenever
needed.

= Applications of mathematical concepts have also been integrated with allied
subjects like science and social sciences.

= Adequate and variety of examples/exercises have been given in each section.

= For refocusing and strengthening the understanding and skill of problem solving
and applicabilities, miscellaneous types of examples/exercises have been
provided involving two or more sub concepts at a time at the end of the chapter.
The scope of challenging problems to talented minority have been reflected
conducive to the recommendation as reflected in NCF-2005.

= For more motivational purpose, brief historical background of topics have been
provided at the end of the chapter and at the beginning of each chapter relevant
quotation and photograph of eminent mathematician who have contributed
significantly in the development of the topic undertaken, are also provided.

= Lastly, for direct recapitulation of main concepts, formulas and results, brief
summary of the chapter has also been provided.

I am thankful to Professor Krishan Kumar, Director, NCERT who constituted the
team and invited me to join this national endeavor for the improvement of mathematics
education. He has provided us with an enlightened perspective and a very conducive
environment. This made the task of preparing the book much more enjoyable and
rewarding. I express my gratitude to Professor J.V. Narlikar, Chairperson of the
Advisory Group in Science and Mathematics, for his specific suggestions and advice
towards the improvement of the book from time to time. I, also, thank Prof. G. Ravindra,
Joint Director, NCERT for his help from time to time.

I express my sincere thanks to Professor Hukum Singh, Chief Coordinator and
Head DESM, Dr. V. P. Singh, Coordinator and Professor S. K. Singh Gautam who
have been helping for the success of this project academically as well as
administratively. Also, I would like to place on records my appreciation and thanks to
all the members of the team and the teachers who have been associated with this
noble cause in one or the other form.

Pawan K. JAIN
Chief Advisor
Textbook Development Committee
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CONSTITUTION OF INDIA

Preamble

WE, THE PEOPLE OF INDIA, having
solemnly resolved to constitute India into
a SOVEREIGN SOCIALIST SECULAR
DEMOCRATIC REPUBLIC and to secure to
all its citizens:

JUSTICE,
political;

LIBERTY of thought, expression, belief,
faith and worship;

EQUALITY of status and of opportunity;
and to promote among them all

FRATERNITY assuring the dignity of
the individual and the unity and integrity of
the Nation;

IN OUR CONSTITUENT ASSEMBLY
this twenty-sixth day of November, 1949,
do HEREBY ADOPT, ENACT AND GIVE
TO OURSELVES THIS CONSTITUTION.

social, economic and
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CONSTITUTION OF INDIA

Part IV A (Article 51 A)

Fundamental Duties

Fundamental Duties — It shall be the duty of every citizen of India —

(a)
(b)

(©)
(d)
(e)

)
(&)
(h)
(i)
()

%)

to abide by the Constitution and respect its ideals and institutions, the National
Flag and the National Anthem;

to cherish and follow the noble ideals which inspired our national struggle for
freedom;

to uphold and protect the sovereignty, unity and integrity of India;
to defend the country and render national service when called upon to do so;

to promote harmony and the spirit of common brotherhood amongst all the people
of India transcending religious, linguistic and regional or sectional diversities;
to renounce practices derogatory to the dignity of women;

to value and preserve the rich heritage of our composite culture;

to protect and improve the natural environment including forests, lakes, rivers,
wildlife and to have compassion for living creatures;

to develop the scientific temper, humanism and the spirit of inquiry and reform;
to safeguard public property and to abjure violence;

to strive towards excellence in all spheres of individual and collective activity so
that the nation constantly rises to higher levels of endeavour and achievement;

who is a parent or guardian, to provide opportunities for education to his child
or, as the case may be, ward between the age of six and fourteen years.
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Chapter 1

(RELATIONSAND FUNCTIONS)

*»*There is no permanent place in the world for ugly mathematics ... . It may
be very hard to define mathematical beauty but that is just as true of
beauty of any kind, we may not know quite what we mean by a
beautiful poem, but that does not prevent us from recognising
one when we read it. — G. H. HARDY <*

1.1 Introduction

Recall that the notion of relations and functions, domain, pEA R AYAS S AR
co-domain and range have been introduced in Class XI )
along with different types of specific real valued functions
and their graphs. The concept of the term ‘relation’ in
mathematics has been drawn from the meaning of relation
in English language, according to which two objects or
quantitiesarerelated if thereisarecognisable connection
or link between the two objects or quantities. Let A be
the set of students of Class X1 of a school and B be the
set of studentsof Class X| of the same school. Then some
of the examples of relations from A to B are \
(i) {(a, b) e A xB:aisbrother of b}, Lejeune Dirichlet
(i) {(a, b) e A xB:aissister of b}, (1805-1859)
(i) {(a, b) € A xB: age of ais greater than age of b},
(iv) {(a, b) € A x B: total marks obtained by a in the final examination islessthan
thetotal marks abtained by b inthe final examination},
(v) {(a, b) e A xB:alivesinthe samelocality asb}. However, abstracting from
this, we define mathematically arelation R from A to B as an arbitrary subset
of A x B.
If (&, b) € R, we say that a is related to b under the relation R and we write as
a R b. In generd, (a, b) € R, we do not bother whether there is a recognisable
connection or link between a and b. As seenin Class X1, functions are special kind of
relations.
Inthischapter, wewill study different types of relationsand functions, composition
of functions, invertible functionsand binary operations.
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1.2 Types of Relations

In this section, we would like to study different types of relations. We know that a
relation in aset A isasubset of A x A. Thus, the empty set ¢ and A x A are two
extremerelations. For illustration, consider arelationRintheset A ={1, 2, 3, 4} givenby
R={(a, b): a—b=10}. Thisisthe empty set, asno pair (a, b) satisfiesthe condition
a—b=10. Similarly, R ={(a, b) : |a—b | >0} isthewhole set A x A, as al pairs
(& b)in A x A satisfy | a— b | > 0. These two extreme examples lead us to the
following definitions.

Definition 1 A relation R in a set A is called empty relation, if no element of A is
related to any element of A, i.e, R=¢ c A xA.

Definition 2 Arelation Rin aset A iscaled universal relation, if each element of A
isrelated to every element of A, i.e, R=A x A.

Both the empty relation and the universal relation are some times called trivial
relations.

Example 1 Let A be the set of all students of aboys school. Show that the relation R
inA givenby R={(a, b) : aissister of b} isthe empty relation and R" = {(a, b) : the
difference between heights of a and b is less than 3 meters} is the universal relation.

Solution Since the school isboys school, no student of the school can be sister of any
student of the school. Hence, R = ¢, showing that R is the empty relation. It is also
obviousthat the difference between heights of any two students of the school hasto be
less than 3 meters. This showsthat R* = A x A isthe universal relation.

Remark In Class XI, we have seen two ways of representing arelation, namely raster
method and set builder method. However, arelationRintheset{1, 2, 3, 4} defined by R
={(a, b) : b = a+ 1} is also expressed as a R b if and only if
b =a+ 1 by many authors. We may al so use this notation, as and when convenient.

If (a, b) € R, we say that aisrelated to b and we denote it asa R b.

One of the most important relation, which playsasignificant rolein Mathematics,
is an equivalence relation. To study equivalence relation, we first consider three
typesof relations, namely reflexive, symmetric and transitive.

Definition 3A relation Rinaset A iscalled
(i) reflexive, if (@, @) € R, for every ae A,
(i) symmetric, if (a,, a)) € Rimpliesthat (a,, a)e R, foral a, a, € A.
(iii) transitive, if (a,,a) € Rand(a, a)e Rimpliesthat (a, a,)e R, foral a, a,
a, e A.



RELATIONS AND FUNCTIONS 3

Definition 4 A relation R in a set A is said to be an equivalence relation if R is
reflexive, symmetric and transitive.

Example 2 Let T bethe set of all trianglesin aplane with R arelationin T given by
R={(T,T,): T, iscongruentto T }. Show that R is an equivalence relation.

Solution R is reflexive, since every triangle is congruent to itself. Further,
(T, T,)e R=T, iscongruenttoT,= T,iscongruentto T, = (T,, T,) € R. Hence,
R is symmetric. Moreover, (T, T,), (T,, T,) € R= T is congruentto T,and T, is
congruentto T,= T, iscongruentto T, = (T, T,) € R. Therefore, Risan equivaence
relation.

Example 3 Let L betheset of al linesin aplaneand R bethereationin L defined as
R={(L, L, :L,isperpendicular to L,}. Show that R is symmetric but neither
reflexivenor transitive.

Solution Risnot reflexive, asaline L, can not be perpendicular to itself, i.e., (L, L,)

¢ R Rissymmetricas (L, L,) € R L,

= L, isperpendicularto L,

= L, isperpendicular to L, L,

= L,L)eR L
Risnot transitive. Indeed, if L, is perpendicular to L, and Fig1.1

L, isperpendicular to L., then L, can never be perpendicular to
L, Infact, L isparaleltoL,ie,(L,L)e R, (L, L)e Rbut(L,L)¢ R

Example 4 Show that the relation Rinthe set {1, 2, 3} givenby R={(1, 1), (2, 2),
(3,3), (1, 2), (2, 3)} isreflexive but neither symmetric nor transitive.

Solution Risreflexive, since (1, 1), (2, 2) and (3, 3) liein R. Also, R isnot symmetric,
as(1,2) e Rbut(2,1) ¢ R. Similarly, Risnot transitive, as(1,2) e Rand (2, 3) e R
but (1, 3) ¢ R.
Example 5 Show that the relation R in the set Z of integers given by

R={(a, b): 2 dividesa— b}
isan equivalencerelation.
Solution R isreflexive, as 2 divides (a—a) for al ae Z. Further, if (a, b) € R, then
2 dividesa—b. Therefore, 2 dividesb —a. Hence, (b, a) € R, which showsthat R is
symmetric. Similarly, if (a, b) € Rand (b, ¢) € R, thena—b and b —c are divisible by
2.Now, a—c=(a—b) + (b-c) iseven (Why?). So, (a—c) isdivisible by 2. This
showsthat R istransitive. Thus, R isan equivalencerelationin Z.
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In Example 5, note that all even integers are related to zero, as (0, + 2), (0, £ 4)
etc., liein R and no odd integer isrelated to 0, as (0, + 1), (0, £+ 3) etc., do not liein R.
Similarly, all odd integers are related to one and no even integer is related to one.
Therefore, the set E of all even integers and the set O of all odd integers are subsets of
Z satisfying following conditions:

(i) All elements of E are related to each other and all elements of O arerelated to
each other.
(i) No element of E isrelated to any element of O and vice-versa.
(i) EandOaredigointandZ =E U O.

The subset E is called the equivalence class containing zero and is denoted by
[Q]. Similarly, O isthe equivalence class containing 1 and is denoted by [1]. Note that
[O] #[1],[0] =[2r] and [1] =[2r + 1], r € Z. Infact, what we have seen above istrue
for an arbitrary equivalence relation R in a set X. Given an arbitrary equivaence
relation R in an arbitrary set X, R divides X into mutually disjoint subsets A, called
partitionsor subdivisions of X satisfying:

(i) al elementsof A, arerelated to each other, for al i.
(i) no element of A isrelated to any element of A I #].
(i) VA =XandA NA =0,i#].

The subsets A are called equivalence classes. Theinteresting part of the situation
isthat we can go reverse also. For example, consider a subdivision of the set Z given
by three mutually digoint subsetsA , A, and A, whose union is Z with

A ={xe Z:xisamultipleof 3} ={..,-6,-3,0, 3,6, ...}
A,={xe Z:x-1lisamultipleof 3} ={..,-5,-2,1,4,7, ..}
AB:{xe Z:x—2isamultipleof 3} ={...,—-4,-1,2,5,8, ...}

Define arelation Rin Z given by R ={(a, b) : 3 divides a — b}. Following the
arguments similar to those used in Example 5, we can show that R is an equivalence
relation. Also, A, coincideswith the set of all integersinZ which arerelatedto zero, A,
coincides with the set of all integers which are related to 1 and A, coincides with the
set of all integersin Z which are related to 2. Thus, A, = [0], A, = [1] and A, = [2].
Infact, A, =[3r], A,=[3r+ 1] and A, =[3r + 2], fordlr e Z.

Example 6 Let R be the relation defined in the set A = {1, 2, 3, 4, 5, 6, 7} by
R = {(a, b) : both a and b are either odd or even}. Show that R is an equivalence
relation. Further, show that all the elementsof thesubset {1, 3,5, 7} arerelated to each
other and all the elements of the subset {2, 4, 6} are related to each other, but no
element of the subset {1, 3, 5, 7} isrelated to any element of the subset {2, 4, 6}.
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Solution Given any element a in A, both a and a must be either odd or even, so
that (a, a) € R. Further, (a, b) € R = both a and b must be either odd or even
= (b, a) € R. Similarly, (a, b) e Rand (b, ¢) € R = all elements a, b, ¢, must be
either even or odd simultaneously = (a, ¢) € R. Hence, R is an equivalence relation.
Further, all the elements of {1, 3, 5, 7} are related to each other, as all the elements
of this subset are odd. Similarly, al the elements of the subset { 2, 4, 6} arerelated to
each other, as all of them are even. Also, no element of the subset {1, 3, 5, 7} can be
related to any element of {2, 4, 6}, aselementsof {1, 3, 5, 7} are odd, while elements
of {2, 4, 6} are even.

|[EXERCISE 1.1
1. Determinewhether each of thefollowing relations are reflexive, symmetric and
trangitive:
() RelationRinthesetA={1,2,3, ..., 13, 14} defined as
R={(x,y):3x-y=0}
(i) Relation Rintheset N of natural numbers defined as
R={(x,y):y=x+5andx<4}
(i) RelationRinthesetA={1,2,3,4,5,6} as
R={(x,y):yisdivisible by x}
(iv) Relation Rintheset Z of all integers defined as
R={(x,y) : x—yisaninteger}
(v) ReationRintheset A of human beingsinatown at aparticular timegiven by
@ R={(xy):xandywork at the same place}
(b) R={(x,y) : xandy livein the same locality}
(©) R={(x,y) : xisexactly 7 cm taler than y}
(d) R={(x,y): xiswifeof y}
(e R={(x ) : xisfather of y}
2. Show that therelation R in the set R of real numbers, defined as
R ={(a, b) : a< b?} isneither reflexive nor symmetric nor transitive.
3. Check whether therelation R definedinthe set {1, 2, 3, 4, 5, 6} as
R={(a b): b= a+ 1} isreflexive, symmetric or transitive.
4. Show that the relation R in Rdefined as R = {(a, b) : a < b}, isreflexive and
transitive but not symmetric.

5. Check whether therelation R in Rdefined by R ={(a, b) : a < b% isreflexive,
symmetric or transitive.




10.

11.

12.

13.

14.
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Show that the relation R in the set {1, 2, 3} given by R = {(1, 2), (2, 1)} is
symmetric but neither reflexive nor transitive.

Show that the relation R in the set A of all the books in alibrary of a college,
given by R ={(x, y) : x and y have same number of pages} is an equivalence
relation.

Show that therelation Rintheset A ={1, 2, 3, 4, 5} given by

R ={(a b) : |]a—Db| is even}, is an equivalence relation. Show that al the
elementsof {1, 3, 5} arerelated to each other and all the elements of {2, 4} are
related to each other. But no eement of {1, 3, 5} isrelated to any element of { 2, 4}.

Show that each of therelation Rintheset A={xe Z : 0<x< 12}, given by
() R={(a, b): |a—bJisamultiple of 4}
(i) R={(a,b):a=hb}
isan equivalence relation. Find the set of all elementsrelated to 1 in each case.
Give an example of arelation. Whichis
(i) Symmetric but neither reflexive nor transitive.
(i) Transitive but neither reflexive nor symmetric.
(iii) Reflexive and symmetric but not transitive.
(iv) Reflexive and transitive but not symmetric.
(v) Symmetric and transitive but not reflexive.

Show that the relation R in the set A of points in a plane given by
R ={ (P, Q) : distance of the point Pfromthe originis same asthe distance of the
point Q fromtheorigin}, isan equivalencerelation. Further, show that the set of
all pointsrelated to apoint P+ (0, 0) isthe circle passing through Pwith origin as
centre.

Show that therelation R defined in the set A of all trianglesasR={(T,, T,) : T,
issimilar to T,}, is equivalence relation. Consider threeright angle triangles T,
with sides 3, 4, 5, T, with sides 5, 12, 13 and T, with sides 6, 8, 10. Which
trianglesamong T,, T, and T, are related?

Show that the relation R defined in the set A of all polygonsasR ={(P,, P,) :
P, and P, have same number of sides}, is an equivalence relation. What is the
set of all elementsin A related to theright angletriangle T with sides 3, 4 and 5?

Let L bethe set of dl linesin XY plane and R be the relation in L defined as
R={(L,L):L, ispaalel toL}. Show that Risan equivalencerelation. Find
the set of al linesrelated to theliney = 2x + 4.
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15. LetRbetherdationintheset{1, 2, 3,4} givenby R={(1, 2), (2, 2), (1, 1), (4,4),
(1, 3), (3, 3), (3, 2)}. Choose the correct answer.

(A) Risreflexive and symmetric but not transitive.
(B) Risreflexiveand transitive but not symmetric.
(C) Rissymmetric and transitive but not reflexive.
(D) Risanequivalencerelation.

16. LetRbetheredationintheset Ngivenby R={(a,b):a=b-2,b>6}. Choose
the correct answer.

(A) 24eR (B) 38R (C) (6,8eR (D) (87)¢eR

1.3 Typesof Functions

Thenotion of afunction along with some special functionslikeidentity function, constant
function, polynomial function, rational function, modulusfunction, signum function etc.
along with their graphs have been given in Class XI.

Addition, subtraction, multiplication and division of two functions have also been
studied. As the concept of function is of paramount importance in mathematics and
among other disciplinesaswell, wewould liketo extend our study about function from
where we finished earlier. In this section, we would like to study different types of
functions.

Consider the functions f, f,, f, and f, given by the following diagrams.

InFig 1.2, we observethat theimages of distinct elementsof X, under thefunction
f, are distinct, but the image of two distinct elements 1 and 2 of X, under f, is same,
namely b. Further, there are some elements like e and f in X, which are not images of
any element of X, under f , whileall elements of X, areimages of some elementsof X,
under f,. The above observations|ead to the following definitions:

Definition 5A function f: X — Y isdefined to be one-one (or injective), if theimages
of distinct elements of X under f are distinct, i.e., for every x, X, € X, f(x)) = f(x)
implies x, = x,. Otherwisg, f is called many-one.

The functionf and f,in Fig 1.2 (i) and (iv) are one-one and the function f, and f,
inFig 1.2 (ii) and (iii) are many-one.
Definition 6 A function f: X — Y issaid to be onto (or surjective), if every element
of Y isthe image of some element of X under f, i.e., for every y € Y, there exists an
element x in X such that f(x) = y.

Thefunctionf,andf,inFig 1.2 (iii), (iv) areonto and thefunctionf inFig 1.2 (i) is
not onto as elements e, f in X, are not the image of any element in X, under f..
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1 a
N [ s
2 /{/ ¢
3 d
e
4 f
X, X, X
0) ‘ (i) ’
1 fi

N =
a

A W N =

o S :
w

U S

4
X, (iii) X, X, (iv) Xy
Fig1.2(i)to(iv)

Remark f: X — Yisontoif and only if Rangeof f =Y.
Definition 7 A function f : X — Y issaid to be one-one and onto (or bijective), if fis
both one-one and onto.

Thefunctionf, in Fig 1.2 (iv) is one-one and onto.

Example 7 Let A bethe set of all 50 students of Class X inaschool. Let f: A — Nbe
function defined by f(X) = roll number of the student x. Show that f is one-one
but not onto.

Solution No two different students of the class can have sameroll number. Therefore,
f must be one-one. We can assume without any loss of generality that roll numbers of
studentsarefrom 1to 50. Thisimpliesthat 51 in Nisnot roll number of any student of
the class, so that 51 can not beimage of any element of X under f. Hence, fisnot onto.

Example 8 Show that the function f : N — N, given by f(X) = 2x, is one-one but not
onto.

Solution The function f is one-one, for f(x) = f(x)) = 2x = 2x, = X = X,. Further,
fisnot onto, asfor 1 € N, there does not exist any x in N such that f(x) = 2x = 1.
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Example9 Provethat thefunctionf: R — R, given by f (x) = 2x, isone-one and onto.

Solution fisone-one, asf(x) = f(x) = 2x, = 2x, = X, = X,. Also, given any rea

number y in R there exists % in Rsuch that f(%) =2. (%) =y. Hence, f isonto.

Y
A
y=f(x)=2x
X'¢ P
0 X
4
Y/
Figl.3

Example 10 Show that the functionf: N— N, givenby f(1) =f(2) = 1andf(xX) =x—1,
for every x> 2, isonto but not one-one.
Solution fisnot one-one, asf(1) =f(2) = 1. Butfisonto, asgivenanyye N, y#1,

we can choose x asy + L suchthat f(y+1) =y+1-1=y.Alsofor 1 € N, we
havef(1) = 1.

Example 11 Show that the functionf: R —» R, Y
defined asf (X) = X2, is neither one-one nor onto. ,
Sx)=x
Solution Sincef(-1) =1 =1f(1), f is not one-
one. Also, the element — 2 in the co-domain Ris
not image of any element x in the domain R X,,f(—1)=1 f= 1=X
(Why?). Therefore f is not onto. x=-1 (%=1
Example 12 Show that f : N — N, given by
x 1if xisodd, /
f(x) L_ ) Y’
X Lif xiseven The image of 1 and —1 under f is 1.

is both one-one and onto. Figl4
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Solution Supposef(x)) =f(x,). Notethat if x isodd and x, is even, then we will have
x, +1=x,—-1,i.e,X,—x =2whichisimpossible. Similarly, the possibility of x, being
even and x, being odd can also be ruled out, using the similar argument. Therefore,
both x, and x, must be either odd or even. Suppose both x, and x, are odd. Then
f(x)=f(x)=x +1=x,+1=x =x,. Similarly, if bothx and x, are even, then also
f(x) =f(x) =%, —-1=%,—-1= X =X, Thus, f is one-one. Also, any odd number
2r + linthe co-domain N istheimage of 2r + 2 inthedomain N and any even number
2r inthe co-domain N isthe image of 2r — 1 inthe domain N. Thus, f is onto.

Example 13 Show that an onto functionf: {1, 2, 3} — {1, 2, 3} isawaysone-one.

Solution Suppose f is not one-one. Then there exists two elements, say 1 and 2 in the
domain whose image in the co-domain is same. Also, the image of 3 under f can be
only one element. Therefore, the range set can have at the most two elements of the
co-domain{1, 2, 3}, showingthat f isnot onto, acontradiction. Hence, f must be one-one.

Example 14 Show that a one-one function f: {1, 2, 3} — {1, 2, 3} must be onto.

Solution Since f is one-one, three elements of {1, 2, 3} must be taken to 3 different
elements of the co-domain {1, 2, 3} under f. Hence, f has to be onto.

Remark The results mentioned in Examples 13 and 14 are also true for an arbitrary
finite set X, i.e., a one-one function f : X — X is necessarily onto and an onto map
f: X — X isnecessarily one-one, for every finite set X. In contrast to this, Examples 8
and 10 show that for an infinite set, this may not betrue. In fact, thisisacharacteristic
difference between afinite and an infinite set.

EXERCISE 1.2|

1
1. Show that the functionf : R, — R, defined by f(x) = X is one-one and onto,

where R, isthe set of al non-zero real numbers. Istheresult true, if the domain
R, isreplaced by N with co-domain being same as R,?
2. Check theinjectivity and surjectivity of thefollowing functions:
(i) f: N — Ngivenby f(x) = x
(i) f:Z — Z givenby f(x) =x2
(i) f: R > R givenby f(x) = x?
(iv) f: N — N given by f(x) = x®
(v) f:Z — Z givenby f(x) = x3
3. Provethat the Greatest Integer Functionf: R — R, given by f(X) =[X], isneither
one-one nor onto, where [X] denotes the greatest integer less than or equal to x.
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Show that the Modulus Functionf: R — R, given by f(x) = | x|, isneither one-
one nor onto, where | x | isx, if X ispositiveor 0 and |x|is—X, if X iS negative.

Show that the Signum Functionf: R — R, given by

Lifx 0
f(x) Oiifx 0
“1if x 0

is neither one-one nor onto.
LeeA={1,23},B={4,56,7} andletf={(1, 4), (2,5), (3, 6)} beafunction
from A to B. Show that f is one-one.

In each of the following cases, state whether the function is one-one, onto or
bijective. Justify your answer.

() f: R — R defined by f(X) = 3 —4x
(i) f: R - Rdefined by f(x) = 1+ x?

Let A and B be sets. Show that f : A x B — B x A such that f(a, b) = (b, a) is
bijectivefunction.

"N 1t nisodd
Letf: N — N bedefined by f(n) = N foral ne N.
,if niseven

State whether the function f is bijective. Justify your answer.
LetA=R—{3} and B =R —{1}. Consider the function f: A — B defined by

f(x) = (%) . Isf one-one and onto? Justify your answer.

Letf: R — R be defined as f(x) = x*. Choose the correct answer.

(A) fisone-oneonto (B) fismany-one onto

(C) fisone-onebut not onto (D) fisneither one-one nor onto.
Letf: R — R be defined as f(x) = 3x. Choose the correct answer.

(A) fisone-oneonto (B) fismany-one onto

(C) fisone-one but not onto (D) fisneither one-one nor onto.
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1.4 Composition of Functionsand I nvertible Function

In this section, we will study composition of functions and the inverse of a hijective
function. Consider the set A of al students, who appeared in Class X of a Board
Examination in 2006. Each student appearing in the Board Examination isassigned a
roll number by the Board which is written by the students in the answer script at the
time of examination. In order to have confidentiality, the Board arrangesto deface the
roll numbers of studentsin the answer scripts and assigns afake code number to each
roll number. Let B — N be the set of all roll numbersand C c N be the set of all code
numbers. Thisgivesriseto two functionsf: A — Bandg: B — Cgivenby f(a) =the
roll number assigned to the student a and g (b) = the code number assigned to therall
number b. In this process each student is assigned aroll number through the function f
and each roll number is assigned a code number through the function g. Thus, by the
combination of these two functions, each student iseventually attached acode number.

Thisleadsto thefollowing definition:

Definition 8Letf: A — B and g: B — C betwo functions. Then the composition of
f and g, denoted by gof, is defined as the function gof : A — C given by

gof (X) =9(f(x)), v xe A.

Fig15

Example15Letf:{2,3,4,5 —{3,4,5 9 andg:{3,4,5,9} — {7, 11, 15} be
functions defined as f(2) = 3, f(3) = 4, f(4) = f(5) =5and g(3) = g(4) =7 and
g(5) = g(9) = 11. Find gof.

Solution We have gof(2) = g(f(2)) = g(3) = 7, gof(3) = g(f(3)) = g(4) =7,
gof (4) = g(f(4)) = 9(5 = 11 and gof (5) = g(5) = 11.

Example 16 Find gof and fog, if f : R - Rand g : R — R are given by f(X) = cos x
and g(x) = 3x2. Show that gof = fog.

Solution We have gof (X) = g(f(x)) = g(cos xX) = 3 (cos x)? = 3 cos® x. Similarly,
fog(x) = f(g(x)) = f(3x?) = cos (3x?). Note that 3cos? x # cos 3x?, for x = 0. Hence,
gof # fog.
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: 7 3| . . 3xX+4
Example 17 Show that if f:R—-{=t—>R—-<=1 isdefined by f(X)= and
5 5 5x-7
R3S R isdefinedby 900=52 thenfog=1, and gof=1,,wh
g:R—1Zp >R isdefinedby o3 henfog=1,andgof =1 , where,

3 7
A=R—{§},B=R—{g};IA(x)=x, vXe Al (X)=x, Vxe Barecalledidentity

functions on sets A and B, respectively.
Solution We have

7 (Bx+4) N
_\(Bx=7) _ 2Ix+28+20x-28 41X

33X+ 4)

gof (9 =g 222

= = =X
Bx+4)) 3 15x+20-15x+21 41
(5x-17)

3[(7X+4)j+

L x-3) _ 2x+12420x-12 _4Ix _
5((7x+4)]_7 3Bx+20-35x+21 41
(5x-23)

X+ 4)

Similarly, fo x=f(
milarly, fog(x) = f| & —

Thus, gof (x) =X, vx e B and fog(x) = X, v X e A, which implies that gof = I
and fog = | ,.

Example 18 Show that if f : A - Bandg: B — C areone-one, thengof : A —» Cis
also one-one.

Solution Suppose gof (x,) = gof (x,)

= 9(f(x)) = 9(f(x,)
= f(x) =f(x,), asgis one-one
= X, =X, asfisone-one

Hence, gof is one-one.

Example 19 Show that if f: A - B and g : B — C are onto, then gof : A — C is
also onto.

Solution Given an arbitrary element z € C, there exists a pre-image y of z under g
such that g(y) = z since g isonto. Further, for y € B, there exists an element x in A
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with f(X) =y, sincef isonto. Therefore, gof (X) = g(f(X)) = g(y) = z showing that gof
isonto.

Example 20 Consider functions f and g such that composite gof is defined and is one-
one. Are f and g both necessarily one-one.

Solution Consider f: {1, 2, 3,4} — {1, 2, 3,4, 5, 6} defined asf(x) = %, v x and
0:{1,2,3,4,56} —-{1,2,3,4,5,6} asg(xX) =x,forx=1,2,3,4andg(5) =g(6) =5.
Then, gof (X) = x v X, which shows that gof is one-one. But g is clearly not one-one.

Example 21 Aref and g both necessarily onto, if gof is onto?

Solution Consider f: {1,2,3,4} —{1,2,3,4} andg:{1,2, 3,4} —{1,2, 3} defined
asf()=1,f2=2 f(3)=f(4)=3,9(1)=1,9(2=2andg(3)=g(4) =3.Itcanbe
seen that gof isonto but f is not onto.

Remark It can be verified in general that gof is one-one implies that f is one-one.
Similarly, gof isontoimpliesthat g isonto.

Now, we would like to have close look at the functions f and g described in the
beginning of this section in reference to aBoard Examination. Each student appearing
in Class X Examination of the Board isassigned aroll number under the function f and
each roll number is assigned a code number under g. After the answer scripts are
examined, examiner enters the mark against each code number in a mark book and
submitsto the office of the Board. The Board officials decode by assigning roll number
back to each code number through a process reverse to g and thus mark gets attached
to roll number rather than code number. Further, the processreverseto f assignsaroll
number to the student having that roll number. This helps in assigning mark to the
student scoring that mark. We observe that while composing f and g, to get gof, first f
and then g was applied, while in the reverse process of the composite gof, first the
reverse process of g is applied and then the reverse process of f.

Example 22 Let f: {1, 2, 3} — {4, b, ¢} be one-one and onto function given by
f(1) =4, f(2) =bandf(3) =c. Show that thereexistsafunctiong: {a, b, c} — {1, 2, 3}
such that gof = I, and fog =1, where, X = {1,2,3} andY ={a, b, c}.

Solution Consider g: {a, b, c} —»{1,2,3} asg(a)=1,g(b)=2andg(c) =3. Itis
easy to verify that the compositegof = |, istheidentity function on X and the composite
fog =1, istheidentity functionon'.

Remark Theinteresting fact isthat the result mentioned in the above exampleistrue
for an arbitrary one-one and onto function f : X — Y. Not only this, even the converse
isalsotrue,i.e, if f: X = Y isafunction such that there existsafunctiong: Y — X
such that gof = I, and fog = I, then f must be one-one and onto.

The above discussion, Example 22 and Remark lead to the following definition:
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Definition 9 A function f: X — Y isdefined to be invertible, if there exists afunction
g:Y — Xsuchthat gof =1 andfog=1,. Thefunctiongiscalledtheinverseof f and
is denoted by .

Thus, if f isinvertible, then f must be one-one and onto and conversely, if fis
one-one and onto, then f must beinvertible. Thisfact significantly helpsfor proving a
function f to be invertible by showing that f is one-one and onto, specially when the
actual inverse of f isnot to be determined.

Example 23 Let f: N — Y be afunction defined as f(x) = 4x + 3, where,
Y ={ye N:y=4x+ 3for somex e N}. Show that f isinvertible. Find the inverse.

Solution Consider an arbitrary element y of Y. By the definition of Y, y = 4x + 3,

(y-3)

for some x in the domain N. This shows that X= . Defineg:Y — N by

and

g(Y)=@. Now, gof (x) = g(f (X)) = g(4x + 3) = WZX

o) =flg =1 52 |- 203

and fog =1, which impliesthat f isinvertible and g isthe inverse of f.

+3 =y-3+3=Yy. Thisshowsthat gof =1

Example 24 LetY ={n?: ne N} c N. Consider f: N — Y asf(n) = n?2. Show that
fisinvertible. Find the inverse of f.

Solution An arbitrary element y in Y is of the form n?, for some n € N. This

impliesthat n = \/y . Thisgivesafunctiong:Y — N, defined by g(y) = \/y . Now,

2
gof(n) = g(m) = Jnz = nand fog(y) = f('y)=(y/y) =y, which shows that
gof =1, and fog = |,.. Hence, f is invertible with f *=g.

Example 25 Letf: N — R beafunction defined as f(x) = 4x2 + 12x + 15. Show that
f: N— S, where, Sistherange of f, isinvertible. Find the inverse of f.

Solution Let y be an arbitrary element of rangef. Theny = 4x2 + 12x + 15, for some

Jy 6 3

xin N, which impliesthat y = (2x + 3)2 + 6. This gives x — asy=6.
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Jy 6 3
Let usdefineg: S— N by g(y) = Y >
Now gof(x) = g(f(x)) = g(4x®+ 12x + 15) = g((2x + 3)?> + 6)
_ ((\/(2x+3)2+6—6)—3)_(2X+3_3)_X
2 2
2
-6)-3 2 -6)-3
and fog (y) = f[(( Y ) )]z[ (( Y ) )+3j +6
2 2
= ((y=6)-3+3)) +6=(J/y=6) +6 =y-6+6=y.
Hence, gof =1, and fog =I. Thisimpliesthat f isinvertible with f = = g.

Example 26 Consider f: N - N, g: N —> Nand h: N — R defined as f(x) = 2x,
g(y)=3y+4andh(z) =sinz vx, yand zin N. Show that ho(gof) = (hog) of.

Solution We have
ho(gof) () = h(gof (x)) = h(g(f(x))) = h(g(2x))

=h(3(2x) +4) =h(éx +4) =sin(bx+4) x N.
Also,  ((hog)of) (x) = (hog) (f(x)) = (hog) (2¥) = h(g(2x))

=h(3(2x) + 4) =h(6x + 4) =sin (6x + 4), wXxe N.
This shows that ho(gof) = (hog) of.
Thisresult istruein general situation aswell.
Theorem 1Iff: X —-Y,g:Y - Zandh:Z — Sarefunctions, then

ho(gof) = (hog) of.

We have
ho(gof) (x) = h(gof (x)) = h(g(f(x))), vxin X
and (hog) of (X) = hog(f (X)) = h(g(f(X))), vxin X.
Hence, ho(gof) = (hog)of.

Example 27 Consider f: {1, 2,3} - {a, b, c} andg: {a, b, c} — {apple, bal, cat}
defined as f(1) = a, f(2) = b, f(3) = ¢, g(a) = apple, g(b) = ball and g(c) = cat.
Show that f, g and gof are invertible. Find out f *, g* and (gof)™ and show that
(gof) * = f “og
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Solution Note that by definition, f and g are bijective functions. Let
f{a b, c} - (1, 2 3} and g*: {apple, bal, cat} — {a, b, ¢} be defined as
fHa} =1,fYb} =2, fHc} =3, gH{apple} =a, g{bal} =band g*{cat} =c.
Itiseesy to verify that f *of =1, ., fof*=1_, ,,g70g=1_ ., ad gog'=1,
where, D = {apple, ball, cat}. Now, gof : {1, 2 3} —>{app|e I cat} is given by
gof (1) = apple, gof (2) = ball, gof (3) = cat. We can define
(gof)™: {apple, ball, cat} — {1, 2, 3} by (gof)™* (apple) = 1, (gof)* (bdl) =2 and
(gof)™ (cat) = 3. It is easy to see that (gof)? o (gof) = Iy and
(gof) o (gof)™ = I . Thus, we have seen that f, g and gof are invertible.
Now, f~og™ (apple)=f “(g™(apple)) = f *(a) = 1 = (gof)™ (apple)
f-tog™ (ball) = f Y(g™*(ball)) = f (b) = 2 = (gof)* (bal) and
f~og™ (cat) = f “(g*(cat)) = f (c) = 3 = (gof)™ (cat).
Hence (gof)* =f og™.
The aboveresult istrue in general situation also.
Theorem2Letf: X > Y andg:Y — Z betwo invertible functions. Then gof isalso
invertible with (gof)™? = f~og™.
To show that gof is invertible with (gof)™ = fog?, it is enough to show that
(fog™)o(gof) = I, and (gof)o(f*og™) = L.
Now, (f-rog™) o(gof) = ((f*og™) og) of, by Theorem 1
= (f~o(groQg)) of, by Theorem 1
= (f-*ol,) of, by definition of g*
=1,.
Similarly, it can be shown that (gof )o(f *og ™) = L.

Example 28 Let S={1, 2, 3}. Determine whether the functionsf: S — Sdefined as
below have inverses. Find f 7, if it exists.

(@ f={(11.(22,(3 3)}
(b) £={(12.,(21), G 1}

(© £={(13).(3 2,2 1}

Solution
(@) Itiseasytoseethat f isone-oneand onto, sothat f isinvertiblewith theinverse
flof fgivenby f1={(1, 1), (2, 2), (3, 3)} =H.
(b) Sincef(2) =f(3) =1, f isnot one-one, so that f isnot invertible.
(c) Iltiseasytoseethatf isone-oneand onto, sothatf isinvertiblewith
f1={(31),(273),(1,2)}.
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|EXERCISE 1.3

Letf:{1,3,4 —{1,2,5andg:{1,2 5 — {1, 3} begiven by
f={(1,2),(3,5), 4 1D} ardg={(1, 3), (2, 3), (5, 1)}. Write down gof.
Let f, g and h be functions from R to R. Show that

(f + gyoh = foh + goh

(f . g)oh = (foh) . (goh)
Find gof and fog, if

() () =Ix|and g(x) = | 5x -2

1

(i) f(x) =8¢ and g(x) = X2,

100 = 4D L2 ow that fof() = x, for al xe2. What is th
X = (6x—4) 3 ow of (x) = x, for x¢§. is the
inverse of f?

State with reason whether following functions have inverse
() f:{1,2,3,4} — {10} with
f ={(1, 10), (2, 10), (3, 10), (4, 10)}
(i) 9:{5,6,7,8 —{1,2, 3,4} with
9={(5,4),(6,3).(7,4),(8,2)}
@) h:{2,3,4,5 —»{7,9, 11, 13} with
h={(2,7),(3,9), (4 11), (5 13)}

Show that f: [-1, 1] —» R, givenby f (X) = isone-one. Find theinverse

X
(x+2)
of the function f : [-1, 1] — Rangef.

. Cesa_ X : . _ 2y
(Hint: Fory e Rangef,y="f(x) = a2 , forsomexin[-1,1],i.e,x= —(1_ 9
Consider f : R — R given by f(x) = 4x + 3. Show that f isinvertible. Find the
inverse of f.

Consider f: R, — [4, =) given by f(X) = X2 + 4. Show that f isinvertiblewith the
inversef-of fgivenby f(y) = \/y-4,whereR, isthe set of al non-negative

real numbers.
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9. Consider f: R, =[5, «) given by f (X) = 9x* + 6x — 5. Show that f isinvertible

(£579)-1]

with f(y) = ( 3

10. Letf: X — Y beaninvertible function. Show that f has unique inverse.
(Hint: suppose g, and g, aretwo inverses of f. Thenfor al y € Y,
fog,(y) = 1,(y) = fog,(y). Use one-one ness of f).

11. Considerf:{1,2,3} —»{a b, c} givenbyf(1)=a,f(2) =bandf(3) =c. Find
f = and show that (f 1)*="f.

12. Letf: X =Y beaninvertible function. Show that the inverse of f 1 isf, i.e,
(fH?t=H.

1

13. 1ff: R — R begiven by f(x) = (3— x%)3, then fof () is

1
(A) 3 (B) x° (C) x (D) B-x).
4 . . 4x .
14, Letf:R - {——} — R be afunction defined asf (X) = —— . Theinverse of
3 3x+4

fisthemap g : Rangef - R — {—4} given by

3
__3y _ 4
(A) Q(Y)—3_4y (B) <91(y)—4_3y
_ 4y __3y
© g(y)—3_4y (D) g(y)—4_3y

1.5 Binary Operations

Right from the school days, you must have come across four fundamental operations
namely addition, subtraction, multiplication and division. The main feature of these
operationsis that given any two numbers a and b, we associate another number a + b
a
b

multiplied at atime. When we need to add three numbers, we first add two numbers
and theresult isthen added to thethird number. Thus, addition, multiplication, subtraction

ora—borabor —, b=0. Itisto be noted that only two numbers can be added or
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and division are examples of binary operation, as ‘binary’ means two. If we want to
have a general definition which can cover al these four operations, then the set of
numbers is to be replaced by an arbitrary set X and then general binary operation is
nothing but association of any pair of elements a, b from X to another element of X.
Thisgivesriseto ageneral definition asfollows:

Definition 10 A binary operation * on aset A isafunction * : A x A — A. We denote
* (@, b) by a = b.

Example 29 Show that addition, subtraction and multiplication are binary operations
on R, but divisionisnot abinary operation on R. Further, show that divisionisabinary
operation on the set R, of nonzero real numbers.

Solution  +:R xR — Risgivenhby
(a,b)—>a+b

—:R xR —> Risgiven by
(a,b)—>a-b
xR xR — Risgiven by
(a, b)— ab
Since‘+’, '~ and ‘x’ arefunctions, they are binary operations on R.

But +:RxR — R, givenby (a,b) — %, isnot afunction and hence not a binary

a
operation, asfor b=0, b is not defined.

However, +: R_x R, - R, given by (a, b) — % is a function and hence a
binary operationonR..
Example 30 Show that subtraction and division are not binary operations on N.
Solution —: N x N — N, given by (a, b) — a—b, isnot binary operation, astheimage
of (3,5) under '~ is3—-5=—2¢ N.Smilarly,+~:NxN — N, givenby (a,b) > a+b
is not a binary operation, as the image of (3, 5) under +is3+5= g ¢ N.

Example 31 Show that * : R x R — R given by (a, b) — a + 4b? is a binary
operation.

Solution Since * carries each pair (a, b) to aunique element a+ 4b?in R, * isabinary
operation on R.



RELATIONS AND FUNCTIONS 21

Example 32 Let P be the set of al subsets of agiven set X. Showthatw :PxP— P
givenby (A,B) >AuBandn:PxP— Pgivenby (A, B) > AN B are binary
operations on the set P.

Solution Since union operation U carrieseach pair (A, B) in P x Pto aunique element
AU B inP, uishinary operation on P. Similarly, theintersection operation N carries
each pair (A, B) inPx Ptoaunique element A N B in P, nisabinary operation on P.

Example 33 Show that the v : R X R — R given by (a, b) — max {a, b} and the
A R xR — R givenby (a, b) > min{a, b} are binary operations.

Solution Since v carries each pair (a, b) in R x R to a unique element namely
maximum of aandblyinginR, v isabinary operation. Using the similar argument,
one can say that A isalso abinary operation.
Remark v (4, 7)=7,v(4,-7)=4, A(4,7)=4and A (4,-7)=-T7.

When number of lementsinaset A issmall, we can express abinary operation * on
the set A through a table called the operation table for the operation *. For example

considerA={1,2,3}. Then,theoperation v on A defined in Example 33 can be expressed
by thefollowing operationtable (Table 1.1) . Here, v (1,3)=3, v (2,3)=3, v (1,2) =2

Tablel.1
\% 1 2 3
1 1 2 3
2 2 2 3
3 3 3 3

Here, we are having 3 rows and 3 columns in the operation table with (i, j) the
entry of the table being maximum of i™" and j"" elements of the set A. This can be
generalised for general operation * : A xA — A IfA={a, a, .., a}. Then the
operation table will be having n rows and n columns with (i, j)*" entry being a * a.
Conversely, given any operation table having n rows and n columns with each entry
being an element of A ={a,, a,, ..., & }, we can define abinary operation * : A x A — A
given by a * a = the entry in the i* row and j* column of the operation table.

One may note that 3 and 4 can be added in any order and the result is same, i.e.,
3+4 =4+ 3, but subtraction of 3 and 4 in different order give different results, i.e.,
3—4+#4-3. Similarly, in case of multiplication of 3 and 4, order isimmaterial, but
division of 3 and 4 in different order give different results. Thus, addition and
multiplication of 3 and 4 are meaningful, but subtraction and division of 3 and 4 are
meaningless. For subtraction and division we havetowrite‘ subtract 3from 4’ , * subtract
4from3’, ‘divide3 by 4 or ‘divided by 3'.
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Thisleadsto thefollowing definition:

Definition 11 A binary operation * on the set X is called commutative, if a*b=b* a,
for every a, b e X.

Example 34 Show that + : R x R - R and x : R x R — R are commutative binary
operations, but —: R xR - Rand +: R, x R, — R_ are not commutative.

Solution Sincea+b=b+aandaxb=bxa, va be R, '+ and ‘x" are
commutative binary operation. However, ‘— is not commutative, since 3—4# 4 — 3.
Similarly, 3+ 4 # 4+ 3 showsthat ‘+' isnot commutative.

Example 35 Show that * : R x R — R defined by a * b = a + 2b is not commutative.

Solution Since3* 4=3+8=11and 4 * 3=4+ 6 = 10, showing that the operation
isnot commutative.

If we want to associate three elements of aset X through abinary operation on X,
we encounter a natural problem. The expression a * b * ¢ may be interpreted as
(a=b) = cora=(b=*c)andthese two expressions need not be same. For example,
(8—5) —2+#8—(5-2). Therefore, association of three numbers 8, 5 and 3 through
the binary operation ‘subtraction’ is meaningless, unless bracket is used. But in case
of addition, 8 + 5 + 2 has the same value whether we look at itas (8 + 5) + 2 or as
8 + (5 + 2). Thus, association of 3 or even more than 3 numbers through addition is
meaningful without using bracket. Thisleadsto thefollowing:

Definition 12 A binary operation = : A x A — A is said to be associative if
(@axbyxc=a=(b=c), va b, c e A.

Example 36 Show that addition and multiplication are associative binary operation on
R. But subtraction is not associative on R. Division is not associativeon R ..

Solution Addition and multiplication are associative, since(a+hb) +c=a+ (b+c) and
(axb)yxc=ax(bxc) v a b, ce R However, subtraction and division are not
associative, as (8 —-5)—-3#8—-(5—-3)and (8+5)+3#8+ (5+ 3).

Example 37 Show that # : R x R - R given by a * b — a + 2b is hot associative.

Solution The operation * is not associative, since
(8%5)*3=(8+10) * 3=(8+10) + 6 = 24,
while 8#(5%x3)=8x*(5+6)=8+11=8+22=230.

Remark Associative property of abinary operation isvery important in the sense that
with this property of a binary operation, we can write a, * a,* ... * @ which is not
ambiguous. But in absence of this property, theexpressiona, * a, * ... * a_isambiguous
unlessbracketsare used. Recall that in the earlier classes brackets were used whenever
subtraction or division operations or more than one operation occurred.
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For the binary operation‘+' on R, theinteresting feature of the number zero isthat
a+0=a=0+a,i.e, any number remains unaltered by adding zero. But in case of
multiplication, the number 1 playsthisrole,asax1=a=1xa, v ainR. Thisleads
to thefollowing definition:

Definition 13 Given abinary operation* : A x A — A, anelementec A, if it exists,
is called identity for the operation =, if a*e=a=e=*a, v ae A.

Example 38 Show that zero is the identity for addition on R and 1 is the identity for
multiplication on R. But thereisno identity element for the operations
-:RxR—->Rand+:R xR, >R,

Solutiona+0=0+a=-aandaxl=a=1xa, yae Rimpliesthat 0 and 1 are
identity elementsfor the operations‘+ and ‘ x’ respectively. Further, thereisno element
einRwitha—e=e—-a, v a. Similarly, we can not find any element ein R_ such that
a+e=e+a, yvainR_.Hence ‘— and ‘+" do not have identity element.

Remark Zero isidentity for the addition operation on R but it is not identity for the
addition operationon N, as0 ¢ N. In fact the addition operation on N does not have
any identity.

One further notices that for the addition operation + : R x R — R, given any
ae R, there exists—a in R such that a + (— a) = 0 (identity for ‘+’) = (— a) + a.

Sumllarly,forthemultlpllcatlonoperatlononR,glvenanya;tOmR,WecanchooseE

1 1
in R suchthat a x - = 1(identity for *x") = a x a. Thisleadsto thefollowing definition:
Definition 14 Given abinary operation * : A x A — A with theidentity element einA,
an element a e A issaid to be invertible with respect to the operation *, if there exists

an elementbinA suchthata* b=e=b* aand biscalled theinverse of a and is
denoted by a™.

Example 39 Show that — a isthe inverse of a for the addition operation ‘+' on R and
1

a istheinverse of a# 0 for the multiplication operation ‘x’ on R.

Solution Asa+ (—a)=a—a=0and (—a) + a=0,—aistheinverse of afor addition.

1 1 1
Similarly, fora=0, ax5= 1= 3 x aimpliesthat 3 istheinverseof afor multiplication.
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Example 40 Show that —aisnot theinverse of ae N for the addition operation + on
1
N and gis not the inverse of ae N for multiplication operation x on N, for a = 1.

Solution Since—a ¢ N, —a can not be inverse of a for addition operation on N,
although — a setisfiesa+ (—a)=0=(—a) + a.

1
Similarly, fora=1inN, a ¢ N, whichimpliesthat other than 1 no element of N

hasinversefor multiplication operation on N.

Examples 34, 36, 38 and 39 show that addition on R isacommutative and associative
binary operation with 0 as the identity element and —a astheinverseof ainR v a.

EXERCISE 14
1. Determinewhether or not each of the definition of = given below givesabinary
operation. Intheevent that * is not abinary operation, givejustification for this.
(i) OnZ*, definexbya*b=a-b
(i) On Z*, define* by a*b=ab
(i) On R, define = by a = b = ab?
(iv) On Z*, define* by a*b=|a—Db]|
(v) OnZz* define+bya=b=a
2. For each operation * defined bel ow, determine whether * isbinary, commutative
or associative.
(i) OnZ, defineaxb=a-Db
(i) OnQ, definea*b=ab+1

. ab
(iii) OnQ, definea = b = >

(iv) OnZ*, definea+ b=2%
(v) OnZ*, definea* b=aP

- - __a
(vi) OnR —{-1}, definea* b = b1

3. Consider the binary operation A on the set {1, 2, 3, 4, 5} defined by
a A b=min{a, b}. Write the operation table of the operation A .
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4. Consider abinary operation * on the set {1, 2, 3, 4, 5} given by the following
multiplicationtable (Table 1.2).
(i) Compute (2 * 3) * 4 and 2 * (3 * 4)
(i) Is=* commutative?
(i) Compute (2 * 3) * (4 * 5).
(Hint: usethefollowing table)

Tablel1.2
% 1 2 3 4 5
1 1 1 1 1 1
2 1 2 1 2 1
3 1 1 3 1 1
4 1 2 1 4 1
5 1 1 1 1 5

5. Let #” be the binary operation on the set {1, 2, 3, 4, 5} defined by
a=*"b=H.C.F. of aand b. Isthe operation " same as the operation :* defined
in Exercise 4 above? Justify your answer.

6. Let * bethe binary operation on N given by a = b= L.C.M. of aand b. Find

(i) 57, 20=16 (i) Is=* commutative?
(iii) Is * associative? (iv) Findtheidentity of *inN
(v) Which elements of N are invertible for the operation *?

7. lIs=* defined on the set {1, 2, 3, 4, 5} by a* b =L.C.M. of a and b a binary

operation? Justify your answer.

8. Let * be the binary operation on N defined by a * b = H.C.F. of a and b.
Is = commutative? Is * associative? Does there exist identity for this binary
operation on N?

9. Let * beabinary operation on the set Q of rational numbers as follows:
() axb=a-b (i) a*b=a*+Db?
(i) axb=a+ab (iv) a*b=(a-b)?
ab ,
(v)a*sz (vi) a*b=ab?

Find which of the binary operations are commutative and which are associative.
10. Findwhich of the operations given above hasidentity.
11. Let A =N x N and * be the binary operation on A defined by
(& b)*(c,d)y=(a+c, b+d)
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Show that * is commutative and associative. Find the identity element for * on
A, if any.
12. State whether the following statements are true or false. Justify.
(i) For an arbitrary binary operation = onaset N,a*a=a vae N.
(i) If = isacommutative binary operationon N, thena* (b* c) =(c* b) * a
13. Consider a binary operation * on N defined as a * b = a® + b®. Choose the
correct answer.
(A) Is = both associative and commutative?
(B) Is* commutative but not associative?
(C) Is = associative but not commutative?
(D) Is* neither commutative nor associative?

Miscellaneous Examples

Example 41 If R, and R, are equivalence relations in a set A, show that R, " R, is
also an equivalencerelation.

Solution Since R, and R, are equivalencerelations, (a, @) € R, and (a8, @) € R, vae A.
This implies that (a, a) € R, " R, v a, showing R, N R, is reflexive. Further,
@beRNR =@beR ad@beR = ({baeR ad(baeR =
(b, @) e R, " R,, hence, R, N R, is symmetric. Similarly, (a, b) € R, " R, and
(b,c)e RNR,=(ace R ad(a c)e R,= (ac)e R n R, This shows that
R, N R, istransitive. Thus, R, " R, isan equivalence relation.

Example 42 Let R be a relation on the set A of ordered pairs of positive integers
defined by (X, y) R (u, v) if and only if xv=yu. Show that R isan equivalencerelation.

Solution Clearly, (X, ¥) R (X, ¥), v (X, ¥) € A, since xy = yx. This shows that R is
reflexive. Further, (X, y) R (u, V) = xv = yu = uy = vx and hence (u, v) R (x, y). This
showsthat R is symmetric. Similarly, (x,y) R (u, v) and (u, v) R (a, b) = xv =yu and

b a
ub=va= xvgz yu2=> XV;=yUG = xb =vyaand hence (X, y) R (a, b). Thus, R
u u

istransitive. Thus, R isan equivalence relation.

Example 43 Let X ={1, 2, 3,4, 5,6, 7, 8, 9}. Let R be arelation in X given
by R, ={(x,y) : x—yisdivishle by 3} and R, be another relation on X given by
R,={(x¥):{x ¥} c{1,4,7}} or {x, ¥} ={2,5,8} or {x,y} {3, 6, 9}}. Show that
R, =R,



RELATIONS AND FUNCTIONS 27

Solution Note that the characteristic of sets {1, 4, 7}, {2, 5, 8} and {3, 6, 9} is
that difference between any two elements of these sets is a multiple of 3. Therefore,
(x,y) e R, = x—yisamultipleof 3= {x,y} c {1, 4,7} or {x,y} {25, 8}
or{x, ¥y} c{3,6,9} = (x,y) € R,. Hence, R, c R,. Similarly, {x, y} € R, = {X, y}
c{l 4, 7t or{x y} c{2 5 8 or {x, y} {3, 6, 9} = x—yisdivisble by
3={x Yy} € R. Thisshowsthat R, c R.. Hence, R, = R,.

Exampled4 Letf: X — Y beafunction. Define arelation R in X given by
R ={(a, b): f(a) = f(b)} . Examine whether R is an equivalence relation or not.

Solution For every ae X, (a, @) € R, sincef(a) =f(a), showing that R is reflexive.
Similarly, (a, b) e R= f(a) =f(b) = f(b) =f(a) = (b, @) € R. Therefore, R is
symmetric. Further, (a, b) € Rand (b, ¢) e R= f(a) = f(b) and f(b) =f(c) = f(a)
=f(c) = (a, ¢) € R, which implies that R is transitive. Hence, R is an equivalence
relation.

Example 45 Determine which of the following binary operations on the set R are
associative and which are commutative.

a+b
(@ a*b=1Vv abeR (b)a*bz%va,beR
Solution
(@) Clearly, by definition a * b = b = a = 1, yva, b € R. Also
(@axb)*c=(1=*c)=landa=x(bxc)=a=*(1)=1 v a b, ce R. Hence
R isboth associative and commutative.

a+b b+a i .
(b) axb= TZT = b * a, shows that * is commutative. Further,
a+b
(a*b)*cz( 5 j*c.
a+by .
L2 _a+b+2c
B 2 4
b+c
But a*(b*c)za*( 5 j
b+c
_a+ 2 2a+b+c a+b+2c.
= 5= 2 # ingeneral.

Hence, * is not associative.
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Example 46 Find the number of all one-one functionsfromset A ={1, 2, 3} toitself.

Solution One-one function from {1, 2, 3} to itself is simply a permutation on three
symbols 1, 2, 3. Therefore, total number of one-one maps from {1, 2, 3} to itself is
same as total number of permutations on three symbols 1, 2, 3whichis3! = 6.

Example4d7 Let A={1, 2, 3}. Then show that the number of relations containing (1, 2)
and (2, 3) which are reflexive and transitive but not symmetric is three.

Solution The smallest relation R, containing (1, 2) and (2, 3) which is reflexive and
transitive but not symmetricis{(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)}. Now, if we add
the pair (2, 1) to R, to get R, then the relation R, will be reflexive, transitive but not
symmetric. Similarly, we can obtain R, by adding (3, 2) to R to get the desired relation.
However, we can not add two pairs (2, 1), (3, 2) or single pair (3, 1) toR, at atime, as
by doing so, wewill beforced to add the remaining pair in order to maintain transitivity
and inthe process, therelation will become symmetric alsowhichisnot required. Thus,
the total number of desired relationsisthree.

Example 48 Show that the number of equivalencerelationintheset{ 1, 2, 3} containing
(14,2)and (2, 1) istwo.

Solution The smallest equivalence relation R, containing (1, 2) and (2, 1) is{(1, 1),
(2, 2), (3, 3), (1, 2), (2, 1)}. Now we are left with only 4 pairs namely (2, 3), (3, 2),
(1,3) and (3, 1). If we add any one, say (2, 3) to R, then for symmetry we must add
(3, 2) d'so and now for transitivity we areforced to add (1, 3) and (3, 1). Thus, the only
equivalence relation bigger than R isthe universal relation. This shows that the total
number of equivalencerelations containing (1, 2) and (2, 1) istwo.

Example 49 Show that the number of binary operationson {1, 2} having 1 asidentity
and having 2 asthe inverse of 2 is exactly one.

Solution A binary operation = on{1, 2} isafunctionfrom{1,2} x{1,2} to{1,2},i.e,
afunction from{(1, 1), (1, 2), (2, 1), (2, 2)} — {1, 2}. Since 1 isthe identity for the
desired binary operation *, * (1, 1) =1, * (1, 2) = 2, * (2, 1) = 2 and the only choice
leftisfor thepair (2, 2). Since2istheinverseof 2,i.e, * (2, 2) must be equal to 1. Thus,
the number of desired binary operation isonly one.

Example 50 Consider the identity function | : N — N defined as| (x) =x v x e N.
Show that although | isonto but | + 1 : N — N defined as

(Iy+1) =1, + 1, (X) =x+x=2xisnot onto.
Solution Clearly I is onto. But | + | is not onto, as we can find an element 3

in the co-domain N such that there does not exist any x in the domain N with
(I, +1) () =2x=3.
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Example 51 Consider a function f : [O,g}aR given by f(x) = sin x and

g: [o,g}_)R given by g(x) = cos x. Show that f and g are one-one, but f + g is not

one-one.

Solution Since for any two distinct elements x, and X, in [O,E} , SN X, # sin x, and
2

COS X, # COS X, both f and g must be one-one. But (f + g) (0) =sin0 + cos0=1 and

(f+9) (gj = sing+ cosg =1. Therefore, f + g is not one-one.

Miscellaneous Exercise on Chapter 1
1. Letf:R — R bedefined asf(x) = 10x + 7. Find the functiong : R — R such
thatgof=fog=1.
2. Letf: W — W bedefinedasf(n)=n-1,if nisoddandf(n)=n+1,if nis
even. Show that f is invertible. Find the inverse of f. Here, W is the set of all
whole numbers.

3. Iff: R > Risdefined by f(x) = x> — 3x + 2, find f (f(X)).

4. Show that thefunctionf: R — {xe R:—1<x< 1} defined by f(x):_1+)|(x|’

X € R isone one and onto function.

5. Show that the function f : R — R given by f(x) =@ isinjective.

6. Give examples of two functionsf: N - Zandg:Z — Z suchthat gofis
injectivebut gisnot injective.
(Hint : Consider f(x) = x and g(x) = |X]).

7. Giveexamplesof twofunctionsf: N — Nandg: N — N suchthat g o f isonto
but f is not onto.

x—=1if x>1

| : _ ) =
(Hint : Consider f(x) =x+ 1 and 9(X) {1 it =1

8. Given anon empty set X, consider P(X) which is the set of all subsets of X.
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10.
11.

12.

13.

14.

15.

16.

17.
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Definetherelation R in P(X) asfollows:
For subsetsA, B in P(X), ARB if and only if A — B. ISR an equivalencerelation
on P(X)? Justify your answer.
Given anon-empty set X, consider the binary operation * : P(X) x P(X) — P(X)
givenby Ax*B=AnNB VA, B inP(X), where P(X) is the power set of X.
Show that X istheidentity element for this operation and X istheonly invertible
element in P(X) with respect to the operation :.
Find the number of al onto functionsfromtheset {1, 2, 3, ..., n} toitself.
LetS={a,b,c} and T ={1, 2, 3}. Find F of thefollowing functions F from S
toT, if it exists.
() F={(&3),(b,2),(c,1)} (i) F={(a 2), (b, 1), (c, 1)}
Consider the binary operations* : R xR - Rand 0: R x R — R defined as
a*b=Ja—blandaob=a, Va, be R. Show that * is commutative but not
associative, o isassociative but not commutative. Further, show that v a, b, ce R,
a*(boc)=(a=*b)o(ax*c).[Ifitisso, wesay that the operation * distributes
over the operation 0]. Does o distribute over *7? Justify your answer.
Given a non-empty set X, let = : P(X) x P(X) —» P(X) be defined as
A*B=(A-B)u (B-A), vA, Be P(X). Show that the empty set ¢ is the
identity for the operation * and all the elements A of P(X) are invertible with
Ar=A. Hint: (A=) u (d-A)=Aand(A-A) U A-A)=A=A=0).
Define abinary operation * ontheset {0, 1, 2, 3, 4, 5} as
a+b, ifa+b<6
axb= )
a+b-6 ifa+b>6
Show that zero istheidentity for this operation and each element a# 0 of the set
isinvertible with 6 — a being theinverse of a.
LeeA={-1,0,1,2},B={-4,-2,0,2} andf, g: A — B befunctions defined

by f(X) =x2 —x, xe A and 9(X)=2

1
X_E‘_L x € A. Aref and g equal?

Justify your answer. (Hint: One may note that two functionsf : A — B and
g:A —> Bsuchthatf(a) =g(a) vae A, are called equa functions).

LetA={1,2,3}. Then number of relationscontaining (1, 2) and (1, 3) which are
reflexive and symmetric but not transitiveis

(A) 1 (B) 2 € 3 (D) 4
LetA={1, 2, 3}. Then number of equivalencerelations containing (1, 2) is
(A) 1 (B) 2 € 3 (D) 4
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Let f: R — R bethe Signum Function defined as

1 x>0
f(x)=410, x=0
-1 x<0
and g : R — R bethe Greatest Integer Function given by g (x) = [X], where [X] is
greatest integer less than or equal to x. Then, does fog and gof coincidein (0, 1]?
Number of binary operations on the set {a, b} are
(A) 10 (B) 16 (© 20 (D) 8

Summary

In this chapter, we studied different types of relations and equivalence relation,
compoasition of functions, invertible functionsand binary operations. The main features
of this chapter are as follows:

L 2 2R 2 2R 4

*

*

Empty relation istherelation Rin X givenby R=¢ < X x X.

Universal relation istherelation Rin X givenby R=X x X.

Reflexive relation R in X isarelation with (3, a) e R vae X.

Symmetric relation Rin X isardation satisfying (a, b) e Rimplies(b, a) € R.
Transitive relation R in X is arelation satisfying (a, b) € Rand (b, ¢) € R
impliesthat (a, c) € R.

Equivalencerelation R in X isarelation which is reflexive, symmetric and
trangtive.

Equivalence class[a] containing ae X for an equivalencerelationRin X is
the subset of X containing all elements b related to a.

A function f : X — Y is one-one (or injective) if

f(x) =f(x) =X, =X, V X, X, € X.

Afunctionf: X — Y isonto (or surjective) if givenany y e Y, 3 xe X such
that f(x) =y.

A functionf: X — Y is one-one and onto (or bijective), if f is both one-one
and onto.

The composition of functionsf: A — B and g : B — C is the function
gof : A — Cgivenby gof(x) = g(f(X)) v x e A.

A function f: X — Y isinvertibleif 3 g:Y — X such that gof = I, and
fog=1,.

A functionf: X — Y isinvertibleif and only if f is one-one and onto.
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¢ Givenafiniteset X, afunctionf: X — X isone-one (respectively onto) if and
only if fisonto (respectively one-one). Thisisthe characteristic property of a
finite set. Thisisnot true for infinite set

@ A binary operation * on aset A isafunction * from A x A to A.

¢ Andementee X istheidentity element for binary operation = : X x X — X,
ifaxe=a=exavae X.

¢ Andement a € X isinvertible for binary operation * : X x X — X, if

thereexistsb € X suchthat a * b = e =b * awhere, eistheidentity for the
binary operation . The element b is called inverse of a and is denoted by a™.

€ Anoperation * on X is commutativeif a* b=b*a ya, binX.
¢ Anopedion = on X isassociativeif (@a* b) *c=a#* (b *c)ya, b, cin X.

Historical Note

The concept of function has evolved over along period of time starting from
R. Descartes (1596-1650), who used the word ‘function’ in his manuscript
“Geometrie” in 1637 to mean some positive integral power X" of a variable x
while studying geometrical curves like hyperbola, parabola and ellipse. James
Gregory (1636-1675) in his work “ Vera Circuli et Hyperbolae Quadratura”
(1667) considered function as a quantity obtained from other quantities by
successive use of algebraic operations or by any other operations. Later G. W.
Leibnitz (1646-1716) in his manuscript “Methodus tangentiuminversa, seu de
functionibus” writtenin 1673 used theword ‘ function’ to mean aquantity varying
from point to point on acurve such asthe coordinates of a point on the curve, the
slope of the curve, the tangent and the normal to the curve at a point. However,
in his manuscript “Historia” (1714), Leibnitz used the word ‘function’ to mean
guantities that depend on a variable. He was the first to use the phrase ‘ function
of X'. John Bernoulli (1667-1748) used the notation ¢x for thefirst timein 1718 to
indicate afunction of x. But the general adoption of symbolslikef, F, ¢, v ... to
represent functionswas made by Leonhard Euler (1707-1783) in 1734 inthefirst
part of his manuscript “Analysis Infinitorium”. Later on, Joeph Louis Lagrange
(1736-1813) published his manuscripts “ Theorie des functions analytiques’ in
1793, where he discussed about analytic function and used the notion f (x), F(x),
o (x) etc. for different function of x. Subsequently, Lejeunne Dirichlet
(1805-1859) gave the definition of function which was being used till the set
theoretic definition of function presently used, was given after set theory was
developed by Georg Cantor (1845-1918). The set theoretic definition of function
known to us presently issimply an abstraction of the definition given by Dirichlet
in arigorous manner.



Chapter 2

INVERSE TRIGONOMETRIC
FUNCTIONS

o Mathematics, in general, is fundamentally the science of
self-evident things. — FELIX KLEIN <+

2.1 Introduction

In Chapter 1, we have studied that the inverse of a function FeASRESAGAEAIRE{EF
f, denoted by £, exists if fis one-one and onto. There are
many functions which are not one-one, onto or both and
hence we can not talk of their inverses. In Class XI, we
studied that trigonometric functions are not one-one and
onto over their natural domains and ranges and hence their
inverses do not exist. In this chapter, we shall study about
the restrictions on domains and ranges of trigonometric
functions which ensure the existence of their inverses and
observe their behaviour through graphical representations.
Besides, some elementary properties will also be discussed.

NN ‘\f'.‘\" N AN AN~

The inverse trigonometric functions play an important Arya Bhatta
role in calculus for they serve to define many integrals. (476-550A.D.)
The concepts of inverse trigonometric functions is also used in science and engineering.

2.2 Basic Concepts

In Class XI, we have studied trigonometric functions, which are defined as follows:
sine function, i.e., sine : R — [~ 1, 1]
cosine function, i.e.,cos: R —> [~ 1, 1]
tangent function, i.e.,tan: R—{ x: x=2n+ 1) g ,neZl}—>R

cotangent function, i.e.,cot : R—{x:x=nnt,ne Z} > R

T
secant function, i.e.,sec: R—{x:x=2n +1) 5 ,nel} - R-(-1,1)

cosecant function, i.e., cosec: R—{x:x=nn, ne Z} > R-(-1,1)
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We have also learnt in Chapter 1 that if f: X—Y such that f(x) = y is one-one and
onto, then we can define a unique function g : Y—X such that g (y) = x, where xe X
and y = f(x), y € Y. Here, the domain of g = range of f and the range of g = domain
of . The function g is called the inverse of fand is denoted by f'. Further, g is also
one-one and onto and inverse of g is f. Thus, g™ = (f )" = f. We also have

Frof)y=f"F@)=f"0)=x
and FofHM=fF') =fx)=y

Since the domain of sine function is the set of all real numbers and range is the
closed interval [—1, 1]. If we restrict its domain to [—_n , E}, then it becomes one-one
2

and onto with range [ 1, 1]. Actually, sine function restricted to any of the intervals

- - — T . . .
{ﬁ, —n},[—n, E}, {—, —} etc., is one-one and its range is [-1, 1]. We can,
2 2 2 2
therefore, define the inverse of sine function in each of these intervals. We denote the
inverse of sine function by sin™ (arc sine function). Thus, sin™ is a function whose
-3t -1

domain is [- 1, 1] and range could be any of the intervals {T’ 7} s {—, —} or

[E,B—;}, and so on. Corresponding to each such interval, we get a branch of the

2

T
function sin-'. The branch with range [? ,E is called the principal value branch,

whereas other intervals as range give different branches of sin”. When we refer
to the function sin™', we take it as the function whose domain is [-1, 1] and range is

-T T . . -T T
—,—|. We write sin! : [-1, 1] > | —.,—
2 2 2 2
From the definition of the inverse functions, it follows that sin (sin™ x) = x

b s
if —1<x<1 and sin” (sin x) = x if —ESXS 5 In other words, if y = sin™! x, then
sin y = Xx.

Remarks

(1) We know from Chapter 1, that if y =f(x) is an invertible function, then x=f-!(y).
Thus, the graph of sin™! function can be obtained from the graph of original
function by interchanging x and y axes, i.e., if (a, b) is a point on the graph of
sine function, then (b,a) becomes the corresponding point on the graph of inverse
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of sine function. Thus, the graph of the function y = sin™' x can be obtained from
the graph of y = sin x by interchanging x and y axes. The graphs of y = sin x and
y =sin’ xare as given in Fig 2.1 (i), (ii), (iii). The dark portion of the graph of
y = sin™ x represent the principal value branch.

(i) It can be shown that the graph of an inverse function can be obtained from the
corresponding graph of original function as a mirror image (i.e., reflection) along
the line y = x. This can be visualised by looking the graphs of y = sin x and

y =sim! x as given in the same axes (Fig 2.1 (iii)).

X -1
3n |
2
-2r
v
, 4
Y Y’
y=sin"x y=sinxandy=sin" x
Fig 2.1 (i) Fig 2.1 (iii)

Like sine function, the cosine function is a function whose domain is the set of all

real numbers and range is the set [-1, 1]. If we restrict the domain of cosine function
to [0, 7], then it becomes one-one and onto with range [—1, 1]. Actually, cosine function
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restricted to any of the intervals [, 0], [0,7t], [&t, 27] etc., is bijective with range as
[-1, 1]. We can, therefore, define the inverse of cosine function in each of these
intervals. We denote the inverse of the cosine function by cos™ (arc cosine function).
Thus, cos™ is a function whose domain is [-1, 1] and range
could be any of the intervals [-m, 0], [0, «], [&®, 27] etc.
Corresponding to each such interval, we get a branch of the
function cos™. The branch with range [0, 7] is called the principal
value branch of the function cos™. We write

cost : [-1, 1] — [O, «].
The graph of the function given by y = cos™ x can be drawn

in the same way as discussed about the graph of y = sin™' x. The
graphs of y = cos x and y = cos™ xare given in Fig 2.2 (i) and (ii).

X'¢

Y
5n l o Sm.
X'< 2 -7 2 T 2 X
c -2 —3n\/_%101 N 3m2n N7
Y/
y=cosx
Fig 2.2 (i) Fig 2.2 (ii)

Let us now discuss cosec'x and sec'x as follows:

Since, cosec x = , the domain of the cosec function is theset {x: x€ R and

sin x
x #nw, n € Z} and the range is the set {y : y e R, y > 1 ory < -1} i.e., the set

R - (-1, 1). It means that y = cosec x assumes all real values except -1 <y < 1 and is
not defined for integral multiple of &. If we restrict the domain of cosec function to

T T
[_5 ’ 5} — {0}, thenitis one to one and onto with its range as the set R —(— 1, 1). Actually,

-3t —= -T T
cosec function restricted to any of the intervals | ——>—— —{-m}, 7,5 - {0},

272
[E%

5 ,7}— {1} etc., is bijective and its range is the set of all real numbers R— (-1, 1).
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Thus cosec™ can be defined as a function whose domain is R — (-1, 1) and range could
_ {—n n} (o) {—3% —n} m [T 3

be any of the intervals ) 17 , 5,7 —{m}etc. The

function corresponding to the range [—?n ,g} — {0} is called the principal value branch

of cosec!. We thus have principal branch as

- T
AU R L (_ —.=|-1{0
cosec’ : R —( 1,1)—){2 2} {0}
The graphs of y = cosec x and y = cosec™' x are given in Fig 2.3 (i), (ii).

-1
y =cosec x
y =cosecx

Fig 2.3 (i) Fig 2.3 (ii)

T
Also, since sec x = , the domain of y =sec xis the setR— {x : x=(2n+ 1) E ,

COS X
n € Z} and range is the set R — (-1, 1). It means that sec (secant function) assumes

T
all real values except —1 <y < 1 and is not defined for odd multiples of 5 . If we

T
restrict the domain of secant function to [0, 7] — { E }, then it is one-one and onto with
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its range as the set R — (=1, 1). Actually, secant function restricted to any of the

-7
intervals [-7, O] — { 7 1, [0, ] - {%}, [w, 2] — { 3?75 } etc., is bijective and its range

is R—{-1, 1}. Thus sec™ can be defined as a function whose domain is R— (-1, 1) and

-7 I8 3n
range could be any of the intervals [- T, 0] — { 7 1, [0, ] - {5 }, [m, 2m] — {? } etc.

Corresponding to each of these intervals, we get different branches of the function sec.

b
The branch with range [0, &] — {E } is called the principal value branch of the

function sec!. We thus have

sec’ :R—(-1,1) = [0, &t] - {7—; }

The graphs of the functions y = sec x and y = sec” xare given in Fig 2.4 (i), (ii).

Y
N
2n
31.:0
LY T
2t/ ; e
S o
/_- 1 1 o 1 -n\
r P ® ® X X
X'<€ —— O L 3 >X 1
2, -1 12 S T R =
n_ [] ] _L
. ? ! ! 20
1 [ 1 _n
: X X v
] [ 1 Y’
Y’ y=sec'x
y=secx
Fig 2.4 (i) Fig 2.4 (i)

Finally, we now discuss tan™ and cot™

We know that the domain of the tan function (tangent function) is the set

T
{x:xe Rand x# (2n +1) E ,n € Z} and the range is R. It means that tan function

L
is not defined for odd multiples of E . If we restrict the domain of tangent function to
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-T T . o .
(?,— j, then it is one-one and onto with its range as R. Actually, tangent function

) ) -3t -1 —-T T T 3n o
restricted to any of the intervals | —.,— |, |—,—= |, | —>—— | etc., is bijective
2 2 22 2 2
and its range is R. Thus tan™ can be defined as a function whose domain is R and

) 31 -m) (-m W) (T3
range could be any of the intervals > o )\ 22 )2 and so on. These
-T T
intervals give different branches of the function tan™. The branch with range 55

is called the principal value branch of the function tan™.
We thus have
—-T T
tan': R - |—»%

272
The graphs of the function y = tan x and y = tan'x are given in Fig 2.5 (i), (ii).

y=tan'x

y=tanx
Fig 2.5 (i) Fig 2.5 (ii)

We know that domain of the cot function (cotangent function) is the set
{x :xe Rand x # nw, n € Z} and range is R. It means that cotangent function is not
defined for integral multiples of 7. If we restrict the domain of cotangent function to
(0, ), then it is bijective with and its range as R. In fact, cotangent function restricted
to any of the intervals (-7, 0), (0, T), (7, 27) etc., is bijective and its range is R. Thus
cot™' can be defined as a function whose domain is the R and range as any of the
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intervals (-7, 0), (0, ®), (7, 27) etc. These intervals give different branches of the
function cot™. The function with range (0, 7) is called the principal value branch of
the function cot-'. We thus have

cot! : R — (0, m)

The graphs of y = cot x and y = cot™ x are given in Fig 2.6 (i), (ii).

y=cot'x

y=cotx

Fig 2.6 (i) Fig 2.6 (ii)
The following table gives the inverse trigonometric function (principal value
branches) along with their domains and ranges.

sin™! c -1, 1] — _E’E
> | 2 2]
cos-! : -1, 1] - [0, ]
R
—1 o L, | =
cosec : R-(-1,1) — 7272 {0}
o
sec”! : R-(-1,1) — [0, 7] — {5}
tan™! c R — (—_nﬁ]
2 2
cot™! : R - 0, )
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1. sin”'x should not be confused with (sin x)™. In fact (sin x)™' =

- and

. . . . sin x
similarly for other trigonometric functions.

2. Whenever no branch of an inverse trigonometric functions is mentioned, we
mean the principal value branch of that function.

3. The value of an inverse trigonometric functions which lies in the range of
principal branch is called the principal value of that inverse trigonometric
functions.

We now consider some examples:

1
) . o T
Example 1 Find the principal value of sin ( NG j .

1 1
Solution Let sin™ (_]: . Then, siny= —&=.
T )7o- Then-siny =

l\)lé
o |a

] and

We know that the range of the principal value branch of sin™ is (

sin| — | = . Therefore, principal value of sin™ | —= | is —
(%)= g5 mhertor. prnci 7]

Example 2 Find the principal value of cot’ (_le
3

Solution Let cot™ (ﬁ) =y. Then,

-1 e (L 2w
Coty=—==—COot| —| = Cot(n_—j = COt(—J
5 (3) 3 3

We know that the range of principal value branch of cot™' is (0, ®) and
-1 -1 2n

2
cot (?j: ﬁ . Hence, principal value of cot™ (ﬁj i ?

|EXERCISE 2.1|

Find the principal values of the following:

1 V3
1. sin™ (——) 2. cos™ (TJ 3. cosec™! (2)

2

1
4. tan” (—/3) 5. cos™ (_Ej 6. tan™ (-1)
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2 1
7. sec”! (@j 8. cot™ (\/5) 9. cos™ [_ﬁj
10. cosec™ (45)

Find the values of the following:

1 1 1 1
11. tan”'(1) + cos’ [— E] + sim! (— 5) 12. cos™ [5] + 2 sin”! [Ej

13. Ifsin x =y, then

T T
(A) 0<y<m (B) ——<y<—
2 2
T T
©) 0<y<m (D) _E<y<5

14. tan? \/g—sec’l(—Z) is equal to

(A) ®) -2 © X D) 2=
3 3 3

2.3 Properties of Inverse Trigonometric Functions

In this section, we shall prove some important properties of inverse trigonometric
functions. It may be mentioned here that these results are valid within the principal
value branches of the corresponding inverse trigonometric functions and wherever
they are defined. Some results may not be valid for all values of the domains of inverse
trigonometric functions. In fact, they will be valid only for some values of x for which
inverse trigonometric functions are defined. We will not go into the details of these
values of x in the domain as this discussion goes beyond the scope of this text book.

Let us recall that if y = sin”'x, then x = sin y and if x = sin y, then y = sin”' x. This is
equivalent to
T om|
2 2]

Same is true for other five inverse trigonometric functions as well. We now prove
some properties of inverse trigonometric functions.

sin (sin? x)=x,xe [-1, 1] and sin” (sinx) = x,x € L—

o . 1
1. (i) sin? ;: cosec'x,x=>21lorx<-1

.. 1
(ii) cos? = =sec™x,x 21lorx <-1
x
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1
(iii) tan? —=cot? x,x > 0
x

To prove the first result, we put cosec™ x =y, i.e., x = cosec y

1
Therefore — =siny
X
Hence sin”! —=y
X
or sin? — = cosec™! x
X
Similarly, we can prove the other parts.
2. (i) sin! (x)= —sintx,x € [-1, 1]
(ii) tan! (x) =—tan'x,x € R
(iii) cosec! (=x) = —cosec' x, Ix12> 1
Let sin! (—x) =y, i.e., —x = siny so that x=—sin y, i.e.,x = sin (-y).
Hence sin! x = -y =—sin! (—x)
Therefore sin™ (—=x) = — sin”'x

Similarly, we can prove the other parts.

3. (i) cos'(=x)=mw—-cos'x, x € [-1, 1]
(i) sec! (—x) = w —seclx, lx1 >1
(iii) cot? (<x) = T - cot'x, x € R

Let cos™ (—x) = yi.e,, — x = cos y so that x = — cos y = cos (T —y)
Therefore cos' x=Tw—y=7—-cos? (—x)
Hence cos! (=x) =T —cos! x

Similarly, we can prove the other parts.

o . b1
4. (i) sin! x + cos! x = 5, xe [-1,1]
g
(i) tan'x + cot'x = 5’ xe R
T
(iii) cosec'x + sec'x = > Ix1>1

T
Let sin™ x = y. Then x = sin y = cos (5— yJ

T T .
Therefore cos™ x = E—y = E—sm x
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a

Hence sin! x+ cos™ x = 5

Similarly, we can prove the other parts.

+
5. (i) tan™'x + tan™ y = tan™ rry
1-xy

,xy<1

(ii) tan'x — tan™' y = tan™! 1):__;; yxy>-1

Let tan” x = ® and tan™ y = ¢. Then x = tan 6, y = tan ¢

tanO+tan ¢ x+y

tan(0+¢) = =
Now 0 l-tanBtan¢ 1-—xy
xX+y
This gives 0+ ¢ = tan’ -
xX+y
Hence tan” x + tan™” y = tan™ m

In the above result, if we replace y by —y, we get the second result and by replacing
y by x, we get the third result as given below.

2
6. (i) 2tan” x = sin! - ZIxI<1
+Xx
2
(ii) 2tan™ x = cos™ 1-:x2 ,x20
(iii) 2 tan™ x = tan’ lzxz,-1<x<1
-X

Let tan™ x =y, then x = tan y. Now

o 2x o 2tany
sin 5> = SIn 1+tan2y

1+ x
=sin” (sin 2y) =2y = 2tan™ x
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2 1-tan®y

1+ tan® y

1-x
Also cos™ el cos’
X

(iii) Can be worked out similarly.

= cos” (cos 2y) = 2y = 2tan” x

We now consider some examples.

Example 3 Show that
1
. il = <y —
(i) sin™ (Zx\ll—xz) =2 sin™ x, NG SX=s >
1
o _ g, —<x<
(i) sin™ (Zx‘h_xl)—Zcos'x, Z—X—l

Solution

(i) Letx =sin®. Then sin™ x = 6. We have
sin”! (2xﬁ) = sin™ (2sin6 l—sinze)
= sin™' (2sinO cosB) = sin~! (sin20) = 26
=2sin" x

(i) Take x=cos 0, then proceeding as above, we get, sin™ (2 XA ’1 —x? ) =2cos! x

1 12 43
Example 4 Show that tan” —+tan —=tan —
2 11 4
Solution By property 5 (i), we have
1 N 2
511 43
LHS. = tan ' s+tan ' 2 —n? 21— 15 _an 2 gy,
2 11 1.2 4
- —=X—
2 11
4 cosx -3n T . .
Example 5 Express tan™ | ——— |, —< x<— in the simplest form.
I—sinx 2 2

Solution We write

2X .2 X
oS x cos”“ = —sin” =
-1 -1
tan (1 - j:tan 2 2
— X . aX . X X
Sin.x cos’ =+sin’ =—2sin=cos=

2 2 2
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= tan”!
= tan”!
— tan!
Alternatively,
1 cosx 1
tan - = tan
1—sin x
= tan”!
= tarfl
= tan~!

X . X X X
COS—+SsIn— || COS——SIn—
[cosgind ) ooz -n3 )

X . X )2

COS— —SIn—

3]

cos X +sin = l+tan 2
2 2| —tan™ 2
X . X X
COS ——Sin— 1—tan—
2 2 2
T x T x
tan| =+= || ==+Z=
i (4 ZH 4 2
. (n j ) (n—sz
sin| ——x sin
2 _1 2
_— < |=tan | —————
T T—2x
1—cos| —— 1—cos
2 2
. (TE 2x) (Tc 2xj
2sin cos
4
2sin? (n—2x}
4
Cot(n 2x] - {tanﬁn n— ZxH
4
tan(£+f) r.x
4 2 2

Example 6 Write Cot_l(

j, x > 1 in the simplest form.

Solution Let x = sec 0, then \/x2 —-1= \/secz 0—1=tan®
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1

-1

Therefore, cot™' = cot” (cot®) = 0 =sec” x, which is the simplest form.

o 2x 3x—x° 1
Example 7 Prove that tan™! x + tan —2° tan”! | T 52 |, lxl<—

1-3x> B

Solution Let x = tan 0. Then 0 = tan™ x. We have

3 3
R.H.S. = tan™" 3x x2 =tan~ M
1-3x 1-3tan” 0

=tan” (tan30) = 30 = 3tan”' x = tan™' x + 2 tan™' x

2x
=tan! x + tan™! e - L.H.S. (Why?)

Example 8 Find the value of cos (sec! x + cosec™ x), x> 1

T
Solution We have cos (sec™ x + cosec™ x) = cos (5] =0

| EXERCISE 2.2 |

Prove the following:

1 1
1. 3sin” x =sin? Bx -4x%), x€ [——, —}
2 2

2. 3cos! x =cos?! (4x*- 3x), x€ [12, 1}

3. tan’! 2+tan_1 s 11
11 24 2
1 11_

41 _
4. 2tan" —+tan
2

Write the following functions in the simplest form:

NI a1
5. tan' 2 X %0 6. == x>
X X =

_1| [1=cosx _i[ cosx—sinx
7. tan ,0<x<m 8. tanm | —— |, 0<x<T7
1+cosx COS X +sIn x
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- X
9. tan T lxl<a
a —x

3ax—x

<x <
10. tan” [a _3ax]a>0 T X T

Find the values of each of the following:

-1 < 1 1
11. tan™ | 2cos| 2sin 5 12. cot (tanla + cot'la)
tanl sin”! 2% cos”! 1= y2
13. 2 1+ 2 1+ ,xl<1l,y>0andxy<1

a1
14. 1If sin (sm 1g+cos lszl,then find the value of x

1 X— 1 1 x+ 1 & .
15. If tan +tan =—, then find the value of x
x=2 x+2 4
Find the values of each of the expressions in Exercises 16 to 18.
i 2
16. sin~ (sm—} 17. tan (tan3—nj
3 4

18. tan (sin_1 §+cot‘l gj
5 2

19. cos”' (cos?jis equal to

(A) p (B) p ©) 3 (D) 5
20. sin(%—sin](—%)j is equal to

A l B l C l D) 1

(A) > (B) 3 ©) 1 (D)

1

21. tan /3 —Cot_l(—\/g) is equal to

T
(A) © (B) —7 ©) 0 (D) 23
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Miscellaneous Examples
. . 1,. 3w
Example 9 Find the value of sin (sin ?)

. .1, . 3m. 3w
Solution We know that sin™'(sin x) = x . Therefore, sin !(sin ?) =—

3w T T
But ? —E ,5 , which is the principal branch of sin™" x
2 2
However sin (—)—s1n(7t—3—)—s1n—7t and —nG { E,E}
5 5 5 2 2
. 1,. 3 . q,. 2m. 2@
Therefore sin”'(sin ?) = sin”'(sin ?) = ?

.93 .8 1 84
Example 10 Show that sin 1g—sm 1E—COS !

Solution Let sin"'==x and sin™! % =y

W w

Therefore sin x= % and siny =
Now cosx—\h —sin x—,/l—— (Why?)

and cosy—\/ —sin’ y = 1—@

We have cos (x—y) = cos x cos y + sinx sin y

4 15 3 8 &4
= =X—+=X—

5 17 5 17 85
(84
Therefore X —Yy=cos ! (—]
85

Hence sin”! 2 —sin™! i =cos’! %
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12
Example 11 Show that sin™ 1—+ cos”

112 .

4
Solution Let sin~ E: X, COS g =y, tan” 6— =z

Then

Therefore

We have

Hence

1.€.,
Therefore

Since

Hence

Example 12 Simplify tan_l[

. 12 4 6
sinx=—, cosy=—, tanz=—
13 5 16

5 . 3 12 3
cosx=—, siny=—, tanx=— and tany =—
13 5 5 4

12 3
tan x+tany ?+Z 63
tan(x+y) = =533 =
1—tanx tany l——=x2 16
5 4

tan(x+y)=—tanz

tan (x + y) = tan (=) or tan (x + y) = tan (7 — 2)

X+y=—zOor X+y=m-2

x, y and z are positive, x + y #—z (Why?)

12 4
x+y+z=m or sin'—=+cos”' =+tan 12:75
13 5 16

acosx—bsinx| . a
— |, if —tanx>-1
bcosx+asin x b

Solution We have,

tan~! {

acos x—bsin x
acos x—bsin x _ ~
———— | _ tan 1 bcosx. _ tan !
bcosx+asin x bcosx+asin x
bcosx

_1a _ a
tan”' — —tan l(tanx): tan”' ——x
b b

a
——tan x

a
1+—tan x
b
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Example 13 Solve tan™ 2x + tan™ 3x =

Solution We have tan! 2x + tan~! 3x =

tanl( 2x+3x J_ E

N

or

1-2xx3x )~ 4
. _1( 5x j i
i an = —
1.€. 1—6x2 4
S5x o
Therefore 7 = tan— =1
1-6x
or 6 +5x—1=0ie,(6x-1)(x+1)=0
1
which gives xX= g orx=-1.

Since x =— 1 does not satisfy the equation, as the L.H.S. of the equation becomes

1
negative, X =g is the only solution of the given equation.

Miscellaneous Exercise on Chapter 2

Find the value of the following:

r ( 137tJ ]( 7n}
1. cos Ccos— 2. tan | tan—
6 6
Prove that
3. 2sin_1§ =tan % 4. sin™! i + sin_lé =tan! ﬂ
5 7 17 5 36
44 12 133 412 . 43 . 156
5. CcOoS —+COoS — =Ccos — 6. COS —+SsIn —=sIn —
13 65 13 5 65
o 63 5 .3
. tan  — =smn —+Ccos -—
13 5
-1 1 -1 1 -1 1 1 1_ T
8. tan —+tan —+tan —+tan —=—
5 7 3 8 4
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Prove that

1 1-
9. tan_l,/x =—cos™ (_x] ,xe [0, 1]
2 1+ x

10. Cotl{\h-i_ sinx +\/1—sinx]:£’ ve (O’g)

N1+sinx —+/1—sinx ) 2
11. tan™! Ltx -Vl x =£—lcos*‘x, A < x<1 [Hint: Put x = cos 20]
Jl+x+31—x 4 2 2
12 9_71:—25 n_l_lzgsin_l 2\,5
8 3 4 3

Solve the following equations:

1= 1 _
13. 2tan (cos x) = tan™! (2 cosec x) 14. tan 11+—x:§tan 'x, (x> 0)
X

15. sin (tan™'x), xl < 1 is equal to

(A) (B) ©

X
D
2 ®) \/1+x2

2 2

1—x 1—x 1+x

b
16. sin'(l1 —x)—2sin-'x = 5 , then x is equal to

1 1 1
(A) 0.5 B Ly  (©0O0 (D)

17. tan”' = |- tan ™ 2= is equal to
y Xty

A) = B) = ©) = D) ==
2 3 4
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Summary

© The domains and ranges (principal value branches) of inverse trigonometric
functions are given in the following table:

53

Functions Domain Range
(Principal Value Branches)
. [ 7]
y =sin x [-1, 1] _2,2_
y=cos! x [-1, 1] [0, 7]
= cosec™ x R - (-1,1) _it 7—1:_ {0}
y ’ i 2 52_
i
y =sec! x R-(-1,1) [0, ] — {5}
. R [ T nj
y=tan" x )
y = COt_] X R (0’ TC)
@ sin'x should not be confused with (sinx)™. In fact (sin x)™ = S x and

similarly for other trigonometric functions.

@ The value of an inverse trigonometric functions which lies in its principal

value branch is called the principal value of that inverse trigonometric
functions.

For suitable values of domain, we have

¢ y=sin!lx=>x=siny ® x=siny =>y=sin!x
@ sin (sin! x) =x € sin’! (sin x) = x
) 1

® sin! —= cosec'x ® cos!'(—x) =7 —cos'x
X
1

€ cos! — =seclx & cot! (—x) =1 - cot''x
X

¢ tan’! —=cot! x ® sec! (—x) =m-—seclx
X



54

MATHEMATICS
¢ sin!' (—x)= —sinl x tan”! (—x) = — tan™ x
T
¢ tan!'x + cotlx= 5 cosec! (—x) = — cosec! x
) T T
® sin! x+ cos! x= 5 coseclx + sec’lx = E
‘ 1 1 1 _x+ y ‘ 1 1 2x
tan"'x + tan'y = tan™ 2tan”'x = tan” T O
Y 1-xy 1-x
xX—=Yy
'S 1, —ly, — il
tan”'x — tan’'y = tan T

2x

= CO
1+ x? 1+ x°

¢ 2tan! x = sin

Historical Note

The study of trigonometry was first started in India. The ancient Indian
Mathematicians, Aryabhatta (476A.D.), Brahmagupta (598 A.D.), Bhaskara I
(600A.D.) and Bhaskara IT (1114 A.D.) got important results of trigonometry. All
this knowledge went from India to Arabia and then from there to Europe. The
Greeks had also started the study of trigonometry but their approach was so
clumsy that when the Indian approach became known, it was immediately adopted
throughout the world.

In India, the predecessor of the modern trigonometric functions, known as
the sine of an angle, and the introduction of the sine function represents one of

the main contribution of the siddhantas (Sanskrit astronomical works) to
mathematics.

Bhaskara I (about 600 A.D.) gave formulae to find the values of sine functions
for angles more than 90°. A sixteenth century Malayalam work Yuktibhasa
contains a proof for the expansion of sin (A + B). Exact expression for sines or
cosines of 18°, 36°, 54°, 72°, etc., were given by Bhaskara II.

The symbols sin™ x, cos™ x, etc., for arc sin x, arc cos x, etc., were suggested
by the astronomer Sir John EW. Hersehel (1813) The name of Thales
(about 600 B.C.) is invariably associated with height and distance problems. He
is credited with the determination of the height of a great pyramid in Egypt by
measuring shadows of the pyramid and an auxiliary staff (or gnomon) of known
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height, and comparing the ratios:

H
— = — =tan (sun’s altitude)
S s
Thales is also said to have calculated the distance of a ship at sea through
the proportionality of sides of similar triangles. Problems on height and distance

using the similarity property are also found in ancient Indian works.

— )



Chapter 3

(MATRICES)

+% The essence of Mathematics lies in its freedom. — CANTOR

3.1 Introduction

The knowledge of matricesisnecessary in various branches of mathematics. Matrices
are one of the most powerful toolsin mathematics. This mathematical tool simplifies
our work to a great extent when compared with other straight forward methods. The
evolution of concept of matrices is the result of an attempt to obtain compact and
simple methods of solving system of linear equations. Matrices are not only used as a
representation of the coefficientsin system of linear equations, but utility of matrices
far exceedsthat use. Matrix notation and operations are used in el ectronic spreadsheset
programs for personal computer, which in turn is used in different areas of business
and sciencelike budgeting, sales projection, cost estimation, analysing theresults of an
experiment etc. Also, many physical operations such as magnification, rotation and
reflection through a plane can be represented mathematically by matrices. Matrices
arealso usedin cryptography. Thismathematical tool isnot only used in certain branches
of sciences, but also in genetics, economics, sociology, modern psychology and industrial
management.

In this chapter, we shall find it interesting to become acquainted with the
fundamentals of matrix and matrix algebra.

3.2 Matrix

Suppose we wish to express the information that Radha has 15 notebooks. We may
express it as [15] with the understanding that the number inside [ ] is the number of
notebooks that Radha has. Now, if we have to express that Radha has 15 notebooks
and 6 pens. We may express it as [15 6] with the understanding that first number
inside[ ] isthe number of notebookswhilethe other oneisthe number of pens possessed
by Radha. Let us now suppose that we wish to express the information of possession
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of notebooks and pens by Radha and her two friends Fauzia and Simran which
isasfollows:

Radha has 15 notebooks and 6 pens,
Fauzia has 10 notebooks and 2 pens,
Simran has 13 notebooks and 5 pens.
Now this could be arranged in the tabular form as follows:
Notebooks Pens
Radha 15 6
Fauzia 10 2
Simran 13 5

and this can be expressed as

15 6 < First row
10 2 < Second row
13 5 < Third row
) )
First Second
Column Column
or
Radha Fauzia Simran
Notebooks 15 10 13
Pens 6 2 5

which can be expressed as:

15 10 13 | « Firstrow
6 2 5| <« Second row
T T T
First Second Third
Column Column Column

In the first arrangement the entries in the first column represent the number of
note books possessed by Radha, Fauziaand Simran, respectively and the entriesin the
second column represent the number of pens possessed by Radha, Fauziaand Simran,
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respectively. Similarly, in the second arrangement, the entriesin thefirst row represent
the number of notebooks possessed by Radha, Fauzia and Simran, respectively. The
entries in the second row represent the number of pens possessed by Radha, Fauzia
and Simran, respectively. An arrangement or display of the above kind is called a
matrix. Formally, we define matrix as:

Definition 1 A matrix is an ordered rectangular array of numbers or functions. The
numbers or functions are called the elements or the entries of the matrix.

We denote matricesby capital letters. Thefollowing are some examples of matrices:

5 5 2+i 3 —E . . ,
A=| 0 V5| B=|35 -1 2| c=|7 "% X
5 COSX sinx+2 tanx
3 6 \/:3, 5 7

In the above examples, the horizontal lines of elementsare said to constitute, rows
of the matrix and the vertical lines of elements are said to constitute, columns of the
matrix. ThusA has 3 rows and 2 columns, B has 3 rows and 3 columns while C has 2
rows and 3 columns.

3.2.1 Order of a matrix

A matrix having mrowsand n columnsiscalled amatrix of order mx nor simply mxn
matrix (read as an mby n matrix). So referring to the above examples of matrices, we
haveA as3 x 2 matrix, B as3 x 3 matrix and C as 2 x 3 matrix. We observe that A has
3 x 2 =6 elements, B and C have 9 and 6 elements, respectively.

In general, an m x n matrix has the following rectangular array:

ap apn ais ayj e 4y,

C_lzl C_lzz Uy eee (;IZj ° (:ZZn

qil (.liZ a13 ° qu am

aml amZ am3"' am/‘ °e amn mxn
or A=[a|j]mxn,1£|£m,1£1£n i,je N

Thusthei™ row consists of the elements a , a,, a,..., a_, while the j™ column
consists of the eIements a, a,, a3!.,...,.amj, - -

In general a, isan element lying in the i row and j*" column. We can also call
it as the (i, j)" element of A. The number of elements in an m x n matrix will be
equal to mn.
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In this chapter

1. Weshal follow the notation, namely A = [a”]

1., toindicatethat A isamatrix
of order mx n.

2. We shall consider only those matrices whose elements are real numbers or
functionstaking real values.

We can also represent any point (X, y) in aplane by a matrix (column or row) as

X
[y} (or [x, y]). For example point P(0, 1) asamatrix representation may be given as

P:{ﬂ or [0 1].

Observe that in this way we can aso express the vertices of a closed rectilinear
figureintheform of amatrix. For example, consider aquadrilateral ABCD with vertices
A(1,0),B(3,2,C(1,3),D(-1,2).

Now, quadrilateral ABCD in the matrix form, can be represented as

A B CD All1 O
13 1-1 Bl 3 2

X= or Y =
02 3 2, Cl1 3
D-1 2

Thus, matrices can be used as representation of vertices of geometrical figuresin
aplane.

Now, let us consider some examples.

Example 1 Consider thefollowinginformation regarding the number of men and women
workers in three factories |, |1 and 111

Men workers Women workers
I 30 25
I 25 31
Il 27 26

Represent the aboveinformation in theform of a3 x 2 matrix. What doesthe entry
in the third row and second column represent?
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Solution The information is represented in the form of a3 x 2 matrix asfollows:
30 25
A=|25 31
27 26

The entry in the third row and second column represents the number of women
workersin factory I11.

Example 2 If amatrix has 8 elements, what are the possible orders it can have?

Solution We know that if amatrix isof order m x n, it has mn elements. Thus, to find
all possible orders of amatrix with 8 elements, wewill find al ordered pairs of natural
numbers, whose product is 8.

Thus, all possible ordered pairsare (1, 8), (8, 1), (4, 2), (2, 4)

Hence, possibleordersare 1 x 8,8 x1,4x 2,2 x 4

Example 3 Construct a 3 x 2 matrix whose elements are given by a; =£|i -3j].
2

&1 &
Solution Ingeneral a3 x 2 matrix isgivenby A =| a,, a,, |-
83 S
1. ... . _
Now aij=E||—3J|,|:l,2,3andj=1,2.

1 1 5
Therefore a11=5|1—3><1|:1 a12=§|1—3><2|=E

a21=%|2_3><1|=% a22=%|2—3x2|=2

1 1 3
_213-3x1|=0 _2)3-3x2|=2
Ay 2| x1| A 2| x2| 5

Hence the required matrix isgiven by A =

O NIk
Nlw N N
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3.3 Typesof Matrices
In this section, we shall discuss different types of matrices.
(i) Column matrix
A matrix is said to be a column matrix if it has only one column.

0
3

For example, A =| —1 | isacolumn matrix of order 4 x 1.
1/2

Ingeneral, A=[a] ., isacolumn matrix of order mx 1.
(i) Row matrix
A matrix is said to be arow matrix if it has only one row.

For example, B:[—% J5 2 3} isarow matrix.
1x 4

Ingeneral, B =[b],, isarow matrix of order 1 x n.
(i) Square matrix
A matrix in which the number of rows are equal to the number of columns, is

said to be asquare matrix. Thusan mx n matrix is said to be a square matrix if
m = n and is known as a square matrix of order ‘n’.

3 -1 O
3 , :

For example A = > 3V2 1| isasquare matrix of order 3.
4 3 -1

In general, A = [a”.] nxm 1S @square matrix of order m.

If A =[a] isasquare mtrix of order n, then dlements (entries) a,,, a,,, ... a,,

1 -3 1
are said to constitute the diagonal, of the matrix A. Thus, if A={2 4 -1].
3 5 6

Then the elements of the diagonal of A are 1, 4, 6.
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(iv)

v)

(Vi)
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Diagonal matrix

A square matrix B = [bij] nxm 1S said to be a diagonal matrix if all its non
diagonal elements are zero, that isamatrix B = [bij] nxm 1S Sadto beadiagonal
matrix if b”. =0, wheni #]j.

-11 0 O
-1 0
Forexample,A=[4],B={0 2]Cz 0 2 0}, arediagona matrices
0O 0 3

of order 1, 2, 3, respectively.
Scalar matrix

A diagona matrix issaid to beascalar matrixif itsdiagonal elementsare equal,
that is, a sgquare matrix B = [b”.] issaid to be a scalar matrix if

nxn

biJ.:O, wheni #]j

b”. =k, wheni =j, for some constant k.
For example
J3 0 o
-1 0
A=[3, B= ., C=|0 3 0
0 -1
0 0 3

are scalar matrices of order 1, 2 and 3, respectively.

Identity matrix

A square matrix in which elementsin the diagonal areall 1 and rest are all zero
is caled an identity matrix. In other words, the square matrix A = [a”.] ixpisan
1if i=j

0 if i=j’

We denote the identity matrix of order n by I . When order is clear from the
context, we simply writeit asl.

identity matrix, if &; ={

1 00
10
Forexample[l][0 J, 010 are identity matrices of order 1, 2 and 3,
01

respectively.
Observethat ascalar matrix isan identity matrix when k = 1. But every identity
matrix is clearly ascalar matrix.
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(vii) Zero matrix
A matrix is said to be zero matrix or null matrix if all its elements are zero.

0 0] (OO0 O
For example, [0], o ol'lo o o , [0, Q] are all zero matrices. We denote

zero matrix by O. Its order will be clear from the context.
3.3.1 Equality of matrices

Definition 2 Two matricesA = [a ] and B = [b)] are said to be equal if
(i) they are of the same order
(i) each element of A isequal to the corresponding element of B, that is a, = bij for
aliandj.
2 3 2 3 _ 3 2 2 3
For example, and are equal matrices but and are
01 01 01 01

not equal matrices. Symbolically, if two matricesA and B are equal, we write A = B.

X Yy -15 O
If{z al=|2 6|, thenx==15y=0,z=2,a=.6,b=3,c=2
b c| |3 2

X+3 z+4 2y-7 0 6 3y-2
Example 4 If -6 a-1 0 |=|-6 -3 2c+2

b-3 -21 O 2b+4 -21 O
Find thevalues of a, b, ¢, x, y and z.

Solution As the given matrices are equal, therefore, their corresponding elements
must be equal. Comparing the corresponding elements, we get
x+3=0, z+4=6, 2y—7=3y-2
a-1=-3, 0=2c+2 b-3=2b+4,
Simplifying, we get
=—2,b=-7,c=-1,x=-3,y=-5,2z=2

Example 5 Find the values of a, b, ¢, and d from the following equation:

2a+b a-2b 3 4 —
5c—d 4c+3d| |11 24
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Solution By equality of two matrices, equating the corresponding elements, we get
2at+tb=4 5c—-d=1
a-2b=-3 4c+3d=24
Solving these equations, we get
a=1b=2c=3andd=4

EXERCISE 3.1
2 5 19 7
1. Inthematrix A=| 35 -2 g 12 |, write;
J3 1 -5 17
(i) Theorder of the matrix, (i) The number of elements,

(iii) Write the elements a,,, a,, a,,, &,,, &,..
2. If amatrix has 24 elements, what are the possible ordersit can have? What, if it
has 13 elements?

3. If amatrix has 18 elements, what are the possible ordersit can have? What, if it

has 5 elements?
4. Construct a2 x 2 matrix, A = [a”.], whose elements are given by:
: (i+])? . [ (i +2j)?
(i) a= 5 (ii) aij:T (iii) aij:T
5. Construct a3 x 4 matrix, whose elements are given by:
0) aij=§|—3|+1| (i) a;=2—]
6. Findthevauesof x, y and zfrom the following equations:
X+y+2z 9
14 3 y z| . |x+y 2 6 2| .
Oy 571 5] @5y w|7|s 8@ | X2 |72
Y y+2 7

7. Find the value of a, b, c and d from the equation:

a-b 2a+c 3 -1 5
2a-b 3c+d| |0 13



8. A=l[a],., isasquare matrix, if

(A) m<n (B) m>n
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(C) m=n (D) None of these

9. Which of the given values of x and y make the following pair of matrices equal

3X+7 5 0 y-2
y+1 2-3x|'|8 4

(A) x=— y=7

© y=7, X=73

1 2

(B) Not possibletofind

3

10. Thenumber of all possible matrices of order 3 x 3witheachentry Oor 1is:

(A) 27 (B) 18

3.4 Operationson Matrices

(C) 8L (D) 512

In this section, we shall introduce certain operations on matrices, namely, addition of
matrices, multiplication of amatrix by ascalar, difference and multiplication of matrices.

3.4.1 Addition of matrices

Suppose Fatima has two factories at places A and B. Each factory produces sport
shoes for boys and girls in three different price categories labelled 1, 2 and 3. The
guantities produced by each factory are represented as matrices given below:

Factory at A
Boys Girls
1| 80 60
21 75 65
31 9 85

Factory at B

Boys Girls
I{ 90 50
21 70 55
31 75 75

Suppose Fatima wants to know the total production of sport shoes in each price

category. Then thetotal production

In category 1 : for boys (80 + 90), for girls (60 + 50)
In category 2 : for boys (75 + 70), for girls (65 + 55)
In category 3 : for boys (90 + 75), for girls (85 + 75)

This can be represented in the matrix form as | 75+ 70

80+ 90 60+ 50
65+55].
90+ 75 85+75
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Thisnew matrix isthe sum of the above two matrices. We observe that the sum of
two matricesis amatrix obtained by adding the corresponding elements of the given
matrices. Furthermore, the two matrices have to be of the same order.

by B by
by By by

; 9 43

Thus, if Az[
Ay By ay

} isa2 x 3matrix and Bz{ } isanother

+ + +
2><3matrix.Then,wedefineA+B:{afLl by ap+be &, bis]

Aty @y +by, ayt+by
Ingenerdl, if A= [a”.] andB = [bij] are two matrices of the same order, say m x n.

Then, the sum of the two matrices A and B is defined as a matrix C = [c”.] where
¢, =a, + b, foral possible values of i and j.

mx n’

2 5 1
\/§ ; ﬂ and B= 11|, findA+B

Example 6 Given A ={

Since A, B are of the same order 2 x 3. Therefore, addition of A and B is defined
and isgiven by

243 1445 1-1| [2+/3 1+45 0

A+B=
2-2 3+3 O+1 0 6 1
2 2

1. We emphasise that if A and B are not of the same order, then A + B is not

defined. For exampleif A = 23 , B= L2 & , then A + B isnot defined.
10 101

2. We may observe that addition of matrices is an example of binary operation
on the set of matrices of the same order.

3.4.2 Multiplication of a matrix by a scalar

Now suppose that Fatima has doubled the production at a factory A in al categories
(refer to 3.4.1).
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Previoudly quantities (in standard units) produced by factory A were

Boys
1 80
21 75
31 90

Girls
60
65
85

Revised quantities produced by factory A are as given below:

Boys
1/2x80
2| 2x75
3|2x90

This can be represented in the matrix form as | 150

Girls
2x 60
2x65
2x85
160 120
130 |. We observe that
180 170

the new matrix is obtained by multiplying each element of the previous matrix by 2.

A=[a]

In genera, we may define multiplication of a matrix by a scalar as follows: if
-, isamatrix and k is a scalar, then kA is another matrix which is obtained

by multiplying each element of A by the scalar k.

In other words, kA = K[a,]
for all possible valuesof i and j.

3 115
For example, if

2 0 5

3 115

I [k(alj)] o that is, (i, )™ element of KA is ka”.

A=|J5 7 -3/, then

9 3 45

3A=3[J5 7 -3|=|3/5 21 -9

2 0 5

6 0 15

Negative of a matrix The negative of a matrix is denoted by —A. We define

~A=(-1)A.
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3 1
For example, let A= {_5 x} , then — A isgiven by
3 1] |[-3 -1
coa-ca) %7

Difference of matrices If A = [a”.], B= [bij] are two matrices of the same order,
say m x n, then difference A — B is defined asamatrix D = [d ], whered, = a, - b,
for all valueof i andj. In other words, D =A —B =A + (1) B, that is sum of the matrix
A and the matrix — B.

Exampl 7IfA—1 2 3andB— 3-13 then find 2A — B
= = —B.
xampie 2 31 -1 0 2| n

Solution We have

2A 5—212
T %203

2 46 . -3 1 -3
14 6 2 1 0 -2
2-3 4+1 6-3| |-1 5 3
~|4+1 6+0 2-2| |5 6 0
3.4.3 Properties of matrix addition

The addition of matrices satisfy thefollowing properties:
() Commutative Law If A = [alj], B = [b”.] are matrices of the same order, say
mxn,thenA+B =B +A.
Now A+B=[a] +[b]=[a +b]
= [bij + a”.] (addition of numbers is commutative)
=(b] +[a]) =B +A
(i) Associative Law For any three matrices A = [a”.], B = [bij], C= [cij] of the
sameorder, say mxn, (A+B)+C=A+ (B + C).
Now (A +B)+C= (3] +[b)) +I[c]
=[a, +b] +[c] =[(a +b) + ]
=g, + (b + ¢, (Why?)
=[a] +[(b, + c) =[a] + (b] +[c,]) = A + (B + C)
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(i) Existence of additive identity Let A = [a,] be an m x n matrix and
O be an m x n zero matrix, then A + O = O + A = A. In other words, O is the
additiveidentity for matrix addition.

(iv) The existence of additive inverse Let A = [a”.]mx , be any matrix, then we
have another matrix as—A =[-a] . suchthat A +(-A) = (-A) +A=0. So
—A isthe additive inverse of A or negative of A.

3.4.4 Properties of scalar multiplication of a matrix

IfA= [alj] andB = [bij] be two matrices of the same order, say mx n, and k and | are
scaars, then

(i) KA +B)=KA +KkB, (i) K+ A =KA +1 A
(i) k(A+B)=k(a] + b))
=k[a, +b] = [k (g +b)] = [(ka) + (kb)]
=[ka] +[kb]=k[a]+k[b] = kA +kB
(i) (k+1)A =(k+1)[a]
=[k+1)a] +[ka]+[al=k[a]l+I[a] =kA+IA

8 0 2 -2
Example 8 If A={4 -2|andB=| 4 2 |, then find the matrix X, such that
3 6 -5 1
2A +3X =5B.
Solution We have 2A + 3X = 5B
or 2A +3X —-2A =5B -2A
or 2A —2A + 3X =5B — 2A (Matrix addition iscommutative)
or O+3X=5B-2A (- 2A isthe additive inverse of 2A)
or 3X =5B —2A (Oistheadditiveidentity)
1
or X = 3 (5B - 2A)
2 -2 8 0 1 10 -10| |-16 O
or X:%542—24—2 ==||20 10 |[+| -8 4

3
-5 1 3 6 -25 5 -6 -12
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-10]
10-16 -10+0 —6 -10 151
1l o0-8 1044|122 14| a ¥
3 5.6 512 | 3|31 -7 3
I I -3l 7
| 3 3
5 2 3 6
Example 9 Find X andY, if X+Y = and X-Y = )
09 0 -1
Solution We have(X +Y)+(X-Y)= > 21,13 6
0 9| [0 -1
8 8 8 8
or X+X)+(Y-Y)= = 2X=
0 8 0 8
18 8] [4 4
210 8| |0 4
Also X+Y)—(x-y)=|> ?|_|3 ©
0 9| [0 -
l .ol 5-3 2-6 oy [2 4
% X=X+ +)=1 5 9,107 270 10
yol 2 -4] [1 -2
A “2/0 10| |0 5

Example 10 Find the values of x and y from the following equation:

X 5 3 4 7 6
2 + -
7 y-3 1 2 15 14
Solution We have

2[)( 5 } {3 —4} 7 6] [2x 10 ] [3 -4
7 y-3] |1 2 15 14 14 2y-6| |1 2

|

7 6
15 14

|
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{2X+3 10—4} 7 6 2x+3 6 7 6
or = —
14+1 2y-6+2| " |15 14| | 15 2y-4| |15 14

or 2X+3=7 and 2y—4=14 (Why?)
or 2X=7-3 and 2y =18
4 18
or x=§ and y=3
ie. X=2 and y=9.

Example 11 Two farmers Ramkishan and Gurcharan Singh cultivates only three
varieties of rice namely Basmati, Permal and Naura. The sale (in Rupees) of these
varieties of rice by both the farmersin the month of September and October are given
by the following matricesA and B.

September Sales (in Rupees)

Basmati Permal Naura
A= |: 10,000 20,000 30,000:| Ramkishan

50,000 30,000 10,000 _| Gurcharan Singh

October Sales (in Rupees)

Basmati Permal Naura
B= |: 5000 10,000 6000 :| Ramkishan

20,000 10,000 10,000 _| Gurcharan Singh

(i) Find the combined sales in September and October for each farmer in each
variety.
(i) Find the decrease in sales from September to October.
(iti) If both farmers receive 2% profit on gross sales, compute the profit for each
farmer and for each variety sold in October.

Solution
(i) Combined sales in September and October for each farmer in each variety is

givenby

Basmati Permal Naura

15,000 30,000 36,000 | Ramkishan
A+B=

70,000 40,000 20,000 _| Gurcharan Singh
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(i) Changein salesfrom September to October is given by
Basmati Permal  Naura
A_B= |: 5000 10,000 24,000 :| Ramkishan

30,000 20,000 0 Gurcharan Singh

2
(i) 2% of B=—xB=0.02xB
100

Basmati Permal Naura
0.02| 5000 10,000 6000 Ramkishan
20,000 10,000 10,000

Gurcharan Singh

Basmati Permal Naura

100 200 120 Ramkishan
400 200 200

Gurcharan Singh

Thus, in October Ramkishan receives Rs 100, Rs 200 and Rs 120 as profit in the
sale of each variety of rice, respectively, and Grucharan Singh receives profit of Rs
400, Rs 200 and Rs 200 in the sale of each variety of rice, respectively.

3.4.5 Multiplication of matrices

Suppose Meera and Nadeem are two friends. Meera wants to buy 2 pens and 5 story
books, while Nadeem needs 8 pens and 10 story books. They both go to a shop to
enquire about the rates which are quoted as follows:

Pen — Rs 5 each, story book — Rs 50 each.

How much money does each need to spend? Clearly, MeeraneedsRs (5 % 2+ 50 x 5)
that is Rs 260, while Nadeem needs (8 x 5 + 50 x 10) Rs, that is Rs 540. In terms of
matrix representation, we can write the above information asfollows:

Requirements Prices per piece (in Rupees) Money needed (in Rupees)

2 5 5 5x2+5x50 | |260
8 10 50 8x5+10x50| | 540
Suppose that they enquire about the rates from another shop, quoted as follows:

pen — Rs 4 each, story book — Rs 40 each.

Now, the money required by Meera and Nadeem to make purchases will be
respectively Rs (4 x 2 + 40 x 5) = Rs 208 and Rs (8 x 4 + 10 x 40) = Rs 432
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Again, the above information can be represented as follows:
Requirements Prices per piece (in Rupees) Money needed (in Rupees)

2 5 4 4x2+40x5 | |208
8 10 40 8x4 +10x40| | 432
Now, theinformation in both the cases can be combined and expressed in terms of
matricesasfollows:

Requirements Prices per piece (in Rupees) Money needed (in Rupees)

2 5 5 4 5x2+5x50 4x2+40x5
8 10 50 40 8x5+10x50 8x4 +10x40
260 208
T 540 432

The above is an example of multiplication of matrices. We observe that, for
multiplication of two matricesA and B, the number of columnsin A should be equal to
the number of rowsin B. Furthermore for getting the elements of the product matrix,
we take rows of A and columns of B, multiply them element-wise and take the sum.
Formally, we define multiplication of matricesasfollows:

The product of two matrices A and B is defined if the number of columns of A is
equa to the number of rows of B. Let A = [alj] be an m x n matrix and B = [bjk] be an
n x p matrix. Then the product of the matrices A and B isthe matrix C of order m x p.
To get the (i, k)" element ¢, of the matrix C, we take the i"" row of A and k™ column
of B, multiply them elementwise and take the sum of all these products. In other words,
if A= [alj]mxn, B= [bjk] thenthe i row of Ais[a, a, ... a ] and the k™ column of

nxp’

By
By d
Bis| - |.thenc,= a,b,+a,b,+a,b,+..+3b,= 23D
: =1
o

The matrix C =[c is the product of A and B.

ik]m><p

2 7
For example, if C= 1-12 and D=|-1 1|,thentheproduct CD isdefined
0 3 4 5_4
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2 7
1 -12
and is given by CDz[O 3 4} -1 1|.Thisisa2 x 2 matrix in which each
5 -4

entry isthe sum of the products across some row of C with the corresponding entries
down some column of D. These four computations are

Entry in 1 -1 2 2 7 MHA+EHED+HER)G) ?
first row -1 1{=

firstcolumn |0 3 4 5 —4 ? ?
Entry in 1 -1 2 2 7 13 (HM+EDH M) +2(4)
first row -1 1=

secondcolumn |0 3 4 5 —4 ? ?
Entry in -1 o2 2 Tl |1 2
second row -1 1=

firstcolumn |0 3 4 5 -4 0(2)+3(-1)+4(5) ?
Entry in 1 -1 2 27 13 -2
second row -1 1=

secondcolumn [0 3 4 5 —4 17 0(7)+3(1)+4(-4)

13 -2
Thus CD =
17 -13

Example 12 Find AB, ifA:E z}ande[z 6 0]

7 9 8

Solution The matrix A has 2 columns which is equal to the number of rows of B.
Hence AB is defined. Now
Ap [6(2)+9(7) 6(6)+9(9) 6(0)+9(8)

12(2+3(7) 2(6)+3(9) 2(0)+3(8

[12+63 36+81 0+-72} )

75 117 72
| 4+21 12+27 0+24]

25 39 24
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Remark If AB isdefined, then BA need not be defined. In the above example, AB is
defined but BA is not defined because B has 3 column while A has only 2 (and not 3)
rows. If A, B are, respectively mx n, k x | matrices, then both AB and BA are defined
if and only if n=kand | = m. In particular, if both A and B are square matrices of the
same order, then both AB and BA are defined.

Non-commutativity of multiplication of matrices

Now, we shall see by an example that even if AB and BA are both defined, it is not
necessary that AB = BA.

23

1 -2 3
Example 13 If A:[ 4 2 5} and B=|4 5|, then find AB, BA. Show that
3 21

AB = BA.

Solution Since A isa2 x 3 matrix and B is 3 x 2 matrix. Hence AB and BA are both
defined and are matrices of order 2 x 2 and 3 x 3, respectively. Note that

23

AB (1 -2 3 s 2-8+6 3-10+3 ] [0 -4
T4 2 5 )1 ~ | -8+8+10 -12+10+5| |10 3
(23 Lo 3 2-12 -4+6 6415 10 2 21
and BA=|45 —14-20 -8+10 12+25| =|-16 2 37
-4 2 5
21 2-4 —4+2 645 2 21

Clearly AB = BA

In the above example both AB and BA are of different order and soAB = BA. But
one may think that perhaps AB and BA could be the same if they were of the same
order. But it isnot so, here we give an example to show that even if AB and BA are of
same order they may not be same.

1 0 01
Example 14 If A= and B = ,then AB = 01 .
0 10 -1 0

0 -1
and BA:{1 O]ClearIyAB;tBA.

Thusmatrix multiplicationisnot commutative.
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This does not mean that AB = BA for every pair of matrices A, B for
which AB and BA, are defined. For instance,

i A=t % B O tenaB=ga=|> ?
Tlo 2/ 7|0 4| MENAB=BA= 4 g

Observethat multiplication of diagonal matricesof same order will be commutative.

Zero matrix as the product of two non zero matrices

We know that, for real numbers a, b if ab =0, then either a=0or b=0. Thisneed
not be true for matrices, we will observe this through an example.

00

_ 0 -1||3 5 00
Solution We have AB:{ H }z{ }

) . 0 -1 3 5
Example 15 Find AB, if Az{o 2} and Bz[ }

0 2||0 O 00

Thus, if the product of two matricesisazero matrix, it isnot necessary that one of
the matrices is a zero matrix.

3.4.6 Properties of multiplication of matrices

The multiplication of matrices possessesthefollowing properties, which we state without
proof.

1. The associative law For any three matrices A, B and C. We have
(AB) C =A (BC), whenever both sides of the equality are defined.
2. Thedistributive law For three matrices A, B and C.
(i) A(B+C)=AB +AC
(i) (A+B) C=AC + BC, whenever both sides of equality are defined.

3. The existence of multiplicative identity For every square matrix A, there
exist an identity matrix of same order such that IA = Al = A.

Now, we shall verify these properties by examples.

1 1 -1 13

E I16|fA—2038—02andC—123_4 find

xample = , B= —20_21,|n
3 -1 2 14

A(BC), (AB)C and show that (AB)C = A(BC).
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1 1 1|13 1+0+1 3+2-4 21
Solution We have AB=|2 0 3|| 0 2|=|2+0-36+0+12|=|-1 18
3 -1 2||-14 3+0-2 9-2+8 115

2 1], 54 [ 272 440 6-2 -8+l
(AB) (C)=|-1 18 { }: -1+36 -2+0 -3-36 4+18
115 1+30 2+0 3-30 -4+15

4 4 4 -7
35 2 -39 22
31 2 -27 11

(13 1+6 2+0 3-6 -4+3
Now BC= 02{1 p 3_4} 0+4 0+0 0-4 0+2
-14 QU ~1+8 —2+0 -3-8 4+4
(7 2 -3 -1
_|4 0-4 2
7 -2 -11 8
1 1 -17[7 2 -3 -1
Therefore ABC)=|2 0 3||4 0 4 2
3-1 2|72 -11 8

[ 7+4-7 2+0+2 -3-4+11 -1+2-8
=|14+0+21 4+0-6 —6+0-33 -2+0+24
121-4+14 6+0-4 -9+4-22 -3-2+16

4 4 4 7
=|3 -2 -39 22} (cjeqly, (AB)C=A (BC)
31 2 27 11
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0 6 7 011 2
Example 17 If A=|-6 0 8|,B=|1 0 2|,C=|-2
7 -8 0 120 3
Cdculate AC, BC and (A + B)C. Also, verify that (A + B)C=AC + BC
0O 7 8
Solution Now, A+B=|-5 0 10
8 -6 0
0 7 8 2 0-14+24 10
S (A+B)C=|-5 0 10||-2 |=|-10+0+30 |=|20
| 8 -6 0 3 16+12+0 28
[0 6 7|[2] 0-12+21 9
Further AC=|-6 0 8||-2 |=]-12+0+24 |=|12
|7 -8 0][ 3] 14+16+0 30
[0 1 1][2] [0-2+3 1
and BC = 1 0 2(|-2|=|2+0+6|=| 8
1 2 0] 3] |[2-4+0] |2
9 1 10
S} AC+BC=|12|+| 8 |=]|20
130 |2 28
Clearly, (A+B)C=AC+BC
1 2 3
Example 18 1f A=3 -2 1], then show that A3—23A -401=0
4 2 1
1 2 3|1 2 3 19 4 8
Solution We have A2=AA={3 -2 1||3 -2 1|=|1 12 8
4 2 1|14 2 1 14 6 15
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1 2 3||19 4 8 63 46 69
So A*=AA*=|3 -2 1||]1 12 8|=|69 -6 23
4 2 1]|14 6 15 92 46 63

Now
(63 46 69| 1 2 3 1 00
A3_23A —-401=|69 -6 23|-2313 -2 1(-40/{0 1 O
92 46 63_ 4 2 1 0 01

(63 46 69] [-23 -46 -69] [-40 O 0
=69 6 23|+/-69 46 -23|+| 0 -40 O
92 46 63| |-92 46 -23 0 0 -40

[63-23-40 46-46+0 69-69+0
=|69-69+0 -6+46-40 23-23+0
192-92+0 46-46+0 63-23-40

I
o o o
o o o
o o o
I
@)

Example19Inalegidativeassembly election, apolitical group hired apublicrelations
firm to promote its candidate in three ways: telephone, house calls, and letters. The
cost per contact (in paise) isgivenin matrix A as

Cost per contact

40 Telephone
A= 100 Housecall
50 Letter

The number of contacts of each type made in two cities X and Y is given by

Telephone Housecall Letter
_[1000 500 5000}—>X

3000 1000 10,000|—Y
citiesX and .

. Find the total amount spent by the group in the two
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Solution We have

_ | 40,000+ 50,000 + 250,000 | — X
~ 120,000 +100,000 +500,000 | — Y

_ [340,000] > X
"~ 1720,000 | > Y

So the total amount spent by the group in the two cities is 340,000 paise and
720,000 paise, i.e., Rs 3400 and Rs 7200, respectively.

| EXERCISE 3.2|

. I_etA_24B_1 3C_—25
' 132" |-2 51" |3 4

Find each of thefollowing:

(i) A+B (i) A-B @iy 3A-C
(iv) AB (v) BA
2. Computethefollowing:
~[a b] [ab . |a?+b* b*+c? 2ab  2bc
0] + (i) ¥
_—b a b a a’+c® a?+b? —2ac —2ab

-1 4 -6] [12 7 6

.2 . 2
i) | 8 5 16|+ 8 0 5| (iv) cos’x sn®x| | sn®x cos’x
2 8§ 5 3 2 4 sin?x cos?x| |cos?x sin?x

3. Computetheindicated products.
1

[a blfa-b] o 1211 2 3
) b allb a (i) 3 (23 4 (i) 2 3|2 31
' (2 3 4]]1 -3 5 (21 10 1
(iv) |3 4 5/|0 2 4 (v) | 32 Ll 5 J

|14 5 6/|3 0 5 -11

"3.1 3 2 -3
(Vi) - } 1 0

-1 0 2

- 3 1
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1 2 -3 3-1 2 4 1 2
If A=(5 0 2|,B={4 2 5|andC=|0 3 2|, then compute
1 -1 1 2 0 3 1 -2 3
(A+B) and (B — C). Also, verify that A+ (B -C) = (A + B) - C.
245 23
3 3 5 5
1 2 4 1 2 4
If A=|= — —|and B=|= = —]|,th te 3A — 5B.
3 3 3 5t 5| en compute
T, 2 762
13 3] L5 5 5]
o cos® snd . [sin® —cosb
Simplify cosf| . +sind _
—-sin® coso |cos®  sinb
Find X and, if
7 0 '3 0
(i) X+Y= and X -Y =
2 5 0 3

. 2 3 2 -2
(i) 2X+3Y = and 3X +2Y =
4 0 -1 5

-3 2

Findxandy,if 2|~ |+ ¥ °|=|° ©
naxandy. =g %M1 2|71 8

. . X z 1 -1 35
Solvetheequatlonforx,y,zandt,lfZ[y }JFS{ }z?{ }

3 2 10
FindX,ifY={1 4}and2X+Y={ }

t 0 2 4 6

£ x| 25yl =12 find the values of x and
3 y1—5,|n evauesof xandy.

Given 3{)( y}

6 4
:{ X }{ X+y},findthevalueﬁofx,y,zandw.
zZ W W 3

-1 2 Z+W
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13.

14.

15.

16.

17.

18.

19.
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cosx —-sinx O
If F(x)=|sinx cosx O/, show that F(x) F(y) = F(x +y).
0 0 1

Show that
|5 -1][2 1 2 1||5 -1
0) #
|6 7|3 4 3 4||6 7
1 2 3][-1 1 0] [-1 1 oOf[1 2 3
()0 1 0|0 -1 1| 0-1 1||0 1 O
11 0j|2 3 4 2 3 4|1 10
2 0 1
FindA2-5A+6l,if A=[2 1 3
1-1 0
(1 0 2
If A=|0 2 1|, provethat A>—6A%2+7A+2l=0
|12 0 3
If A F e andi=| = °| find k so that A2 = ka _ 2
4 2 o 1| "MeE®
0 —tang
If A= 2 and | istheidentity matrix of order 2, show that
tang 0
L 2
coso. —Sina
I+A:(I—A){. }
sino.  cosa

A trust fund has Rs 30,000 that must beinvested in two different types of bonds.
Thefirst bond pays 5% interest per year, and the second bond pays 7% interest
per year. Using matrix multiplication, determine how to divide Rs 30,000 among
the two types of bonds. If the trust fund must obtain an annual total interest of:

(@) Rs1800 (b) Rs2000
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20. The bookshop of a particular school has 10 dozen chemistry books, 8 dozen
physics books, 10 dozen economics books. Their selling pricesare Rs 80, Rs 60
and Rs 40 each respectively. Find the total amount the bookshop will receive
from selling all the booksusing matrix algebra.

Assume X, Y, Z, W and P are matrices of order 2 x n,3x k, 2xp, nx 3and p x Kk,
respectively. Choose the correct answer in Exercises 21 and 22.

21. Therestriction onn, k and p so that PY + WY will be defined are:

(A) k=3,p=n (B) kisarbitrary,p=2
(C) pisarbitrary, k=3 (D) k=2,p=3
22. If n=p, then the order of the matrix 7X —5Z is:
(A) px2 (B) 2xn (C) nx3 (D) pxn

3.5. Transpose of aMatrix

In this section, we shall learn about transpose of amatrix and special types of matrices
such as symmetric and skew symmetric matrices.

Definition 3 IfA= [a”.] be an mx n matrix, then the matrix obtained by interchanging
the rows and columns of A is called the transpose of A. Transpose of the matrix A is
denoted by A” or (AT). In other words, if A = [a”.]mx . thenA” = [aji]nx . For example,

3 5 3 43 0
if A=|/3 1| , then A'= 1
5 1 —
O __1 2x3
5 3x2

3.5.1 Properties of transpose of the matrices

We now state the following properties of transpose of matrices without proof. These
may be verified by taking suitable examples.

For any matrices A and B of suitable orders, we have

) (A =A, (i) (kA) = kA’ (where k is any constant)
@iy (A+B)Y=A"+B’ (iv) (AB)Y =B A’
Example 20 If AZB ;/é ﬂ and Bz[lz _21 ﬂ , verify that

(i) (A =A, i) (A+B)Y =A"+PB,

(iii) (kB)" = kB’, where k is any constant.



84 MATHEMATICS

Solution
(i) We have
3 4
A=|3 32 S A= 43 2|= Ay =3 V3 2\ A
4 2 O 4 2 O
2 0
Thus (A) =A
(i) We have
= 3 \/é Z,B: 2 -1 2:>A+B=5 \/5_1 4
4 2 0 1 2 4 5 4 4
5 5
Therefore (A+B) =|+3-1 4
4 4
'3 4 2 1
Now A= [V32],B'=|-1 2|,
20 2 4
(5 &
S A" +B =|\3-14
| 4 4
Thus (A+B)Y=A"+B
(iiiy We have
kB=k2 -1 2:2k -k 2k
1 2 4] |k 2k 4
2k k 21
Then (kB) = |-k 2k |=k|-1 2 |=kB'
2k 4| |24

Thus (kB)’ = kB’
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-2
Example 21 1f A=| 4 |,B=[1 3 -6], verify that (AB)’ = B'A".
5
Solution We have
o
A=| 4|B=[1 3 -6
_5_
-2 -2 -6 12
then AB=| 4|[1 3 —6]=|4 12 -24
5 5 15 -30
1
Now A’=[-245,B=| 3
_6_
1 -2 4 5
BA’=| 3|[-2 4 5]=|-6 12 15|=(AB)
-6 112 -24 -30

Clearly (ABY = B’A’

3.6 Symmetricand Skew Symmetric M atrices

Definition 4 A square matrix A = [a,] is said to be symmetric if A” = A, that is,
[a”.] = [a”] for all possible values of i and j.

J3 2 3
Forexample A=| 2 -15 -1 | isasymmetric matrix asA’ = A
3 -1 1

Definition 5 A square matrix A = [a”.] is said to be skew symmetric matrix if
A’ =—A, that isaJi =-a; for all possible values of i and j. Now, if we puti =j, we
havea, =—a. Therefore 2a, =0or a, = 0 for al i’s.

Thismeans that all the diagonal elements of a skew symmetric matrix are zero.



86 MATHEMATICS

0 e f
Forexample, thematrix B=| —-e 0 g | isaskew symmetric matrix asB’=-B
-f -g O

Now, we are going to prove some results of symmetric and skew-symmetric
matrices.

Theorem 1 For any square matrix A with real number entries, A + A’ isasymmetric
matrix and A —A” is askew symmetric matrix.
Proof Let B =A + A’, then

B = (A+AY
= A"+ (A (as(A+B) =A"+B)
= A’ +A (as(A’) =A)
= A+A’(assA+B=B+A)

=B
Therefore B = A+A’isasymmetric matrix
Now let C=A-A
C=A-AY=A"-(A)Y (Why?)
= A'-A (Why?)
=—-(A-A)=-C
Therefore C= A —A’isaskew symmetric matrix.

Theorem 2 Any square matrix can be expressed as the sum of a symmetric and a
skew symmetric matrix.

Proof Let A be a square matrix, then we can write
1 1
A==A+A)+=(A-A’
2( ) 2( )
From the Theorem 1, we know that (A + A”) isasymmetric matrix and (A —A") is

1
askew symmetric matrix. Sincefor any matrix A, (kA)" =kA’, it followsthat 3 (A+A")

1 n . .
is symmetric matrix and 3 (A-A') is skew symmetric matrix. Thus, any square

matrix can be expressed as the sum of a symmetric and a skew symmetric matrix.



Example 22 Expressthe matrix B =

skew symmetric matrix.

Solution Here

Let

Now

Thus

Also, let

Then

2 -1
B=|-2 3
-4 4
1
P==(B+B)==
> )
, 3
2
P = —_3 3
2
=
L 2
1
pP==(B+PB’
5 )
1
==(B-B)=
Q=5(8-B)
o 1
2
-1
/: I O
Q 2
> 3
L 2
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2 -2 4
-1 3 4| asthesum of asymmetric and a
1 -2 -3
1
-2
-3
1 4 -3 -3 3
-3 6 2= > 3 1],
-3 2 -6 _
21 3
3] N :
2
1|=P
-3
IS asymmetric matrix.
o 2+
Jo -1 -8 | 2 2
5 6 0 5
- -3 0
L2 ]
E_
3
-3/=-0Q
0
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1 . . .
Thus Q= > (B-B’) isaskew symmetric matrix.
5 B 3| |g Lt S
2 2 2 2|19 5 4
Now P+Q:_73 3 1+% 0 3|=|-1 3 4|=B
3 c 1 2 -3
— 1 -3 - 3 0
| 2 112 ]

Thus, B is represented as the sum of a symmetric and a skew symmetric matrix.

|EXERCISE 3.3|
1. Findthetranspose of each of the following matrices:
> - 15
L1 . -
(i) 3 (ii) {2 3} (i) |3 5 6
1 2 3 -1
-1 2 3 -4 1 -5
2. IfA=| 5 7 9/and B=| 1 2 0}, thenverify that
-2 11 13 1
(i) A+B)Y =A"+B, (i) A-B)Y=A"-PB’
34 121
3. If A'=|-1 2| and B:{ },thenverifythat
123
101
(i) A+BY=A"+PB (i) A-B)Y=A"-PB
4 IfA'—__Z *land B=| ™ O thenfind (A + 2By
' R =| g o thenfind( )
5. For the matrices A and B, verify that (AB)" = B’A’, where
1 0

() A=-4|,B=[-1 2 1] (i) A=|1|,B=[1 5 7]
3 2
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. coso  Sna )
6. If (i) Az{ . ]thenverlfythatA’Azl
—sino.  cosa.
.. sino.  cosa _
@y If Az{ . ]thenverlfythatA’Azl
—cosa  Sina
[1 -1 5
7. (i) Show thatthematrix A=|-1 2 1| isasymmetric matrix.
|5 13
[0 1
(if) Show that thematrix A={ -1 0 1 |isaskew symmetric matrix.
1 -10

. 15 .
8. For the matrix A:{6 7]verlfythat

@) (A +A’) isasymmetric matrix
(i) (A —A") isaskew symmetric matrix

0 a b
y W 1
9. Fde(A+A') andE(A—A’),whenAz -a 0 ¢
-b -c O
10. Expressthefollowing matrices asthe sum of asymmetric and askew symmetric
matrix:
_ (6 -2 2
0| 5} i |2 3 -1
1 -1
- 2 -1 3
.uu 3 3 _1 . 1 5
@y |-2 -2 1 (iv) 1 2
-4 -5 2 B
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Choose the correct answer in the Exercises 11 and 12.

11.

12.

If A, B are symmetric matrices of same order, then AB —BA isa
(A) Skew symmetric matrix (B) Symmetric matrix

(C) Zero matrix (D) Identity matrix

i A< {cosa —sina

i },then A+A’=I,if thevaueof o is
sina cosa.

T T
(A) & B) 3
c 3
©€) = D)

3.7 Elementary Operation (Transformation) of aMatrix

There are six operations (transformations) on amatrix, three of which are dueto rows
and three due to columns, which are known as elementary operations or
transformations.

0

(if)

(ii)

The interchange of any two rows or two columns. Symbolically the interchange
of i and j" rows is denoted by R, <> R and interchange of i and j*" column is
denoted by C, <> C.

1 21 -1 431
For example, applying R, <> R, to A =|-1 J3 1|, weget|1 2 1].
5 6 7 5 6 7

The multiplication of the elements of any row or column by a non zero
number. Symbolically, the multiplication of each element of the i row by k,
where k # 0 is denoted by R, — kR.

The corresponding column operation is denoted by C. — kC,

1 2

-1 3

. 1 1 2
For example, applying C, - =C,, toB=
A -1 3

1
, we get
1}

Nl Ne

The addition to the elements of any row or column, the corresponding
elements of any other row or column multiplied by any non zero number.

Symbolically, the addition to the elements of i row, the corresponding elements
of j™ row multiplied by kisdenoted by R — R + kR]..
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The corresponding column operation is denoted by C. — C, + kC]..

1 2 1 2
For example, applying R, — R, - 2R , to Cz{z J , we get [0 5} :

3.8 InvertibleM atrices

Definition 6 If A is a sguare matrix of order m, and if there exists another sgquare
matrix B of the same order m, such that AB = BA = I, then B is called the inverse
matrix of A and it isdenoted by A~*. In that case A issaid to be invertible.

(2 3 2 -3 .
For example, let A= andB = be two matrices.

112 -1 2

(2 3] 2 -3
Now AB=_1 ollZ1 2

_[4-3 -6+6 |10 <

2-2 -3+4| |0 1|

1 0 . . .
Also BA = 0 1 =|.ThusBistheinverseof A, inother
words B = A-*and A isinverse of B, i._e.,A =B

1. A rectangular matrix does not possess inverse matrix, since for products BA
and AB to be defined and to be equal, it is necessary that matrices A and B
should be sguare matrices of the same order.

2. If Bistheinverse of A, then A isaso the inverse of B.

Theorem 3 (Uniqueness of inverse) Inverse of a square matrix, if it exists, is unique.

LetA = [a”.] be a square matrix of order m. If possible, let B and C be two
inverses of A. We shall show that B = C.

Since B istheinverse of A

AB =BA =1 - @
Since Cisdsotheinverse of A

AC=CA =1 .. (2
Thus B=BI=B(AC)=(BA)C=IC=C

Theorem 4 If A and B are invertible matrices of the same order, then (AB)?* = B*A™
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From the definition of inverse of a matrix, we have
(AB) (AB)* =1

or A (AB) (AB)* = A (Pre multiplying both sidesby A2)
or (A'A) B (AB)t = A1 (Since A1l =AY

or IB (AB)1=A"1

or B (AB)t=A"1

or B*B (AB)' =B A

or | (AB)1=Bt A1

Hence (AB)t =Bt Al

3.8.1 Inverse of a matrix by elementary operations

Let X, A and B be matrices of, the same order such that X = AB. In order to apply a
sequence of elementary row operations on the matrix equation X = AB, wewill apply
these row operations simultaneously on X and on thefirst matrix A of the product AB
on RHS.

Similarly, in order to apply a sequence of elementary column operations on the
matrix equation X =AB, wewill apply, these operations simultaneously on X and onthe
second matrix B of the product AB on RHS.

In view of the above discussion, we conclude that if A is amatrix such that A=
exists, then to find A= using elementary row operations, write A = 1A and apply a
sequence of row operation on A = |A till we get, | = BA. The matrix B will be the
inverse of A. Similarly, if we wish to find A~ using column operations, then, write
A =Al and apply a sequence of column operations on A = Al till we get, | = AB.

Remark In case, after applying one or more elementary row (column) operations on
A=I1A(A=Al),if weobtain al zerosin one or more rows of thematrix AonL.H.S,,
then A= does not exist.

Example 23 By using elementary operations, find the inverse of the matrix

ol

Solution In order to use elementary row operations we may write A = |A.

L2 b 9% hen |t 2] OlA @pplyingR R —2R
o 2 -1 |o 1|™ 0 —5|"| -2 1|" @PPYINGR, =R, ~2R)



_ - 1 0
1 2] > 1
or 0o 11°12 =2
- - |5 5.
_l E_
(1 0] 5 5
or =
01 |2 1
L5 5
_l Z_
5 5
-1 =
Thus A 2 -1
L5 5
Alternatively, in order to use
1 2] I
=A
2 -1 |
Applying C, — C, - 2C, we get
1 O]
=A
2 5] |

Now applying C, — —%Cz, we have

2
1 =
{1 O} _A 51
2 1 0 =
L 5
Finally, applying C, — C, —2C,, we obtain

12
1 0] L[5 5
01| |2 -1
L5 5

12

5 5

_1:
Hence A 2 41
5 5

1
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. 1
A (applyingR, — — : R)

A (applyingR, - R, —2R))

elementary column operations, we write A = Al, i.e,,

10
01

-2
0 1
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Example 24 Obtain the inverse of the following matrix using elementary operations

01 2
A=|1 2 3].
311
012 100
Solution WriteA=1A,ie,|1 2 3| =|0 1 0|A
311 0 01
1 2 3 010
or 01 2|=|1 0 O|A (applyingR, <> R))
31 1] (001
1 2 3] [0 10
or 0 1 2|=|1 0 OJA (applyingR, - R,—3R))
0 -5 8] [0-3 1
1 0 -1] [-2 1 0O
or 0 1 2|=|1 0 O0|A (aplyingR, - R,-2R)
05 -8| |0 -3 1
1 0 —1] -2 1 0
or 01 2|=|1 0 OfA (applyingR,— R,+5R)
00 2| |5 -3 1
L _12 é 8 A 1
or 01 = £ 3 1 (applying R, — 5 R,
00 1 = = =
< - 2 2 2
111
1 00 2 2 2
or 01 2/=|1 0 O|A (applyingR, - R +R,)
001 |53 1
2 2 2
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,—> R,—2R)

1

— | N 1__ — | N

Tl o oo Tl o oo

-1|A (applying R

1
2

— |~

{__|_
Il 1
7
o O <
O +H O
— O O
I —|
]
o
o
(o) T

=Al,i.e,

Alternatively, write A

-
O N
N ) )
O
~ . "
O (@) o — | N
o o 32 o
O O O @)
N N N N
o N o N — _
o 4 o o | — | — | N | — | N
- O — o O — o ©O o — O o
o 0_ _O — O_ _0 — 0_ — o — o |
< < < < <
1 1 I 1 I
1 I 1 T 1 I 1
(QVIRN - | i — i
o ™ o < m o ™
— ™ — N - N - N
1 L ] — N L ]
[
S S S S
(@] o o (@]
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1
100 213
or 010/=Al1 0 -1| (C,—C,-2C)
5 31
o o 1L
L 2
(1 1
100 3 13
or 010 =A|-40-1] (C,>C +5C)
0 31 5,1
L 2 2
111
100 2 2 2
or 010/=A|-4 3 -1{(C,>C,-3C)
001 |5 3 1
L2 2 2
i 1 %
2 2 2
Hence At=|-4 3 -1
R’ 1
2 2 2

10 -2
Example 25 Find P, if it exists, given P:{ 5 1]

Solution We have P= I P i 10 =21 11 015
ution =IPi.e, = )
e nave e, 5 1 0 1

1

) 1
or 51=1]10 P (applying R, —» 0 R)
-5 1 0 1
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1 2 =0
or = (10 P (applyingR, > R, + 5R))
0 0 1 1
2

We have all zeros in the second row of the left hand side matrix of the above
equation. Therefore, P! does not exist.

| EXERCISE 3.4

Using elementary transformations, find the inverse of each of the matrices, if it exists
in Exercises1to 17.

1 — 2 1 "1 3]
1. 2. 3 |13
2 3 11 2 7]
4 [2 3] 5'2 1] 6'2 5]
5 7 |7 4 1 3
: (3 1] 8'4 5] 9'3 10
5 2] |3 4] 2 7
" [ 3 —1] " (2 -6 12'6—3
4 2 11 -2 2 1
[ 2 _3] 2 1 2 33
13. ) _2 14. . 2] 15. 12 2 3
- - 3 2 2
(1 3 -2 2 0 -1
6. |-3 0 -5 17.15 1 0
2 5 0 01 3

18. MatricesA and B will be inverse of each other only if
(A) AB=BA (B) AB=BA =0
(C) AB=0,BA =1 (D) AB=BA =1
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Miscellaneous Examples

cosO sno

Example26 If A = i
—-sin® coso

cosnb sinnd
},thenprovethat A”:{ },ne N.

—-sinn® cosnod

Solution We shall prove theresult by using principle of mathematical induction.

cos® sind . | cosnd sinnd
We have P(n):If A= i ,then A" = i ,he N
—sin® coso —sinnB cosnb
cosO sSno cosO sSno
PO): A=| (0 Al=|
-sin® coso —sin® coso
Therefore, theresult istrue for n = 1.

Let the result be true for n = k. So

cos® sind hen AK = coskd sinko
—sin® cosh o | | —sink® cosko

wm:A:{

Now, we prove that the result holds for n = k +1

Now Ak+1

AL AK cos® sinO || coskd sinkd
—-sin® cos6

- —-sink0® coskd

[ cosOcoskd —sinBsinkd  cosOsinkd + sincosko
~ | —sin®coske + cososink® —sinBsinko + cosd coskd

[ cos(@+k6) sin(B+ ke)}_[ cos(k+1)0 sin(k+1)e}

| —sin(0+k6) cos(0+ke) | |-sin(k+1)6 cos(k+1)0

Therefore, theresult istruefor n=k + 1. Thusby principle of mathematical induction,

have A" cosn® sinno
we have =l .
-sinnO® cosno

} , holds for all natural numbers.

Example 27 If A and B are symmetric matrices of the same order, then show that AB
issymmetricif and only if A and B commute, that iSAB = BA.

Solution Since A and B are both symmetric matrices, therefore A” = A and B’ = B.
Let AB be symmetric, then (AB)’ =AB
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But (AB) = B’A’= BA (Why?)
Therefore BA = AB
Conversely, if AB = BA, then we shall show that AB is symmetric.
Now (AB) =B’A’
=B A (as A and B are symmetric)
=AB

Hence AB is symmetric.

2 - 5 2 2 5| _ .
Example 28 Let A = ,B= ,C= . Find a matrix D such that
3 4 7 4 3 8

Ch-AB=0.

Solution Since A, B, C are al square matrices of order 2, and CD — AB is well
defined, D must be a square matrix of order 2.

a b .
Let D:[c d]ThenCD—AB=Og|ves
2 5|[a b [2 -1][5 2 >
o 13 8|lc d| |3 4|7 4]
or [2a+5c 2b+5d| [3 0] [0 O
|3a+8c 3b+8d| |43 22| |0 O
[2a+5c-3 2b+5d 00
or =
|3a+8c-43 3b+8d-22| |0 0

By equality of matrices, we get

2a+5c—-3=0 - (D)

3a+8c-43=0 - (2

2b+5d=0 - (3

and 3b+8d-22=0 .. (4)

Solving (1) and (2), we get a=-191, c = 77. Solving (3) and (4), we get b = — 110,
d=44.

Therefore D= {a b} =

-191 -110
c d

77 44
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Miscellaneous Exercise on Chapter 3

01
Let A :{0 0} , show that (al + bA)"=a"l + na"~1bA, wherel isthe identity

matrix of order 2 and ne N.

_1 1 1 3n 1 3n 1 3n 1
If A=|1 1 1|,provethat A® 3 3" 3"1 n N.
_l l 1 3n 1 3n 1 3” 1
(3 - . |1+2n —4n _ -
If A= , then provethat A" = , Wherenisany positive
1 -1 1-2n

integer.
If A and B are symmetric matrices, prove that AB — BA is a skew symmetric
matrixX.

Show that the matrix B’AB is symmetric or skew symmetric according asA is
symmetric or skew symmetric.

0 2y z
Find the values of x, y, zif thematrix A=|x y —z| satisfy the equation
X -y z
A'A =1.
1 2 0f|0
For what valuesof x: [1 2 1]|2 0 1||2|=0?
102

3 1
If A:[ 1 2]showthatAZ—SA+7I =0.

Findx,if [x -5 -1]

N O B

0 2
21
0 3

R N
I
@)



10.

11.

12.
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A manufacturer produces three products X, y, z which he sells in two markets.
Annual salesareindicated below:

M ar ket Products
I 10,000 2,000 18,000
1 6,000 20,000 8,000

(&) Ifunitsalepricesof x,yand zareRs2.50, Rs 1.50 and Rs 1.00, respectively,
find the total revenue in each market with the help of matrix algebra.

(b) If theunit costs of the above three commodities are Rs2.00, Rs 1.00 and 50
paise respectively. Find the gross profit.

-7 -8 -9
2 4 6
If A and B are square matrices of the same order such that AB = BA, then prove
by induction that AB" = B"A.. Further, prove that (AB)"=A"B" for all ne N.

12 3
Find the matrix X so that X =
4 5 6

Choose the correct answer in the following questions:

13.

14.

15.

L K R R R 2R 2

IfA= is such that A2 =1, then

(A) 1+o2+Py=0 (B) 1-o2+Py=0

(C) 1-o02-Py=0 (D) 1+o2-Py=0

If the matrix A is both symmetric and skew symmetric, then

(A) A isadiagona matrix (B) A isazeromatrix

(C) A isasqguare matrix (D) None of these

If A issguare matrix such that A2=A, then (I + A)3—7 A isequal to

(A) A (B) 1 -A © 1 (D) 3A
Summary

A maitrix is an ordered rectangular array of numbers or functions.

A matrix having mrows and n columnsiis called a matrix of order m x n.

[a],., isacolumn matrix.

[a”.]lxn is arow matrix.

Anm x n matrix is a square matrix if m=n.

A= [alj]mxm is adiagonal matrix if a; = 0, wheni #j.
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A =1a],,, isascaar matrix if a; = 0, wheni # j, a, =k, (k is some
constant), when'i = j.

A= [alj]nxn is anidentity matrix, if a;=1, wheni =j, a, =0, wheni # .
A zero matrix has al its elements as zero.

A= [a”.] = [bij] =B if (i) A and B are of same order, (ii) a, = b”. for all
possible values of i and j.

A = K, , = K@), .,

—A=(-DA

A-B=A+(-1)B

A+B=B+A

(A+B)+C=A+ (B +C), where A, B and C are of same order.

k(A + B) = kA + kB, where A and B are of same order, k is constant.
(k+1)A=KA +IA, where k and | are constant.

thenAB=C=[c,] . Where ¢, = jzn;aij bk
(i) A(BC)=(AB)C, (ii) AB+C)=AB+AC, (iii) (A+B)C=AC+BC
IfA=[a], . thenA”orAT=[a]

i) (A=A, (i) (kKA)Y =KA’, (iii) (A+B)Y=A"+B’, (iv) (AB) =B’A’
A isasymmetric matrix if A" = A.
A isaskew symmetric matrix if A = —A.

Any square matrix can be represented as the sum of a symmetric and a
skew symmetric matrix.

Elementary operations of amatrix are asfollows:

() R« R orCC

(i) R > kR or C — kC

(i) R > R +kRj or C — C +ij

If A and B are two square matrices such that AB = BA = I, then B is the
inverse matrix of A and is denoted by A= and A isthe inverse of B.
Inverse of asquare matrix, if it exists, isunique.

IfA=[a]

ijdmxn

andB=[b

anp

—_— e —



Chapter 4

( DETERMINANTS)

%+ All Mathematical truths are relative and conditional. — C.P. STEINMETZ <

4.1 Introduction

In the previous chapter, we have studied about matrices 1
and algebra of matrices. We have also |earnt that a system
of algebraic equations can be expressed in the form of
matrices. This means, a system of linear equationslike

ax+by=c
ax+hby=c,

can be represented as [al bl} {X} ={Cl}. Now, this
a8 by G

system of equations has a unique solution or not, is ’
determined by the number a, b, — a, b,. (Recall that if

P.S. Laplace
(1749-1827)

%;ﬁﬂ or,a b,—ab # 0, then the system of linear

eqzuations has a unique solution). The number a, b, —a,b,

which determines uniqueness of solution is associated with the matrix A = [

ch bl}

b,
and is called the determinant of A or det A. Determinants have wide applications in
Engineering, Science, Economics, Social Science, etc.

Inthischapter, we shall study determinantsup to order threeonly with real entries.
Also, wewill study various properties of determinants, minors, cofactorsand applications
of determinantsinfinding the areaof atriangle, adjoint and inverse of asquare matrix,
consistency and inconsistency of system of linear equations and solution of linear
equationsin two or three variables using inverse of a matrix.

4.2 Deter minant

To every square matrix A = [a ] of order n, we can associate a number (real or
complex) called determinant of the square matrix A, where a, = @i, )" element of A.
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This may be thought of as a function which associates each square matrix with a
unique number (real or complex). If M is the set of square matrices, K is the set of
numbers (real or complex) and f : M — K is defined by f (A) = k, where A € M and
ke K, thenf(A) iscalled the determinant of A. Itisalso denoted by |A | or det A or A.

b —
RELEIGY

a b a
IfAz[C d},thendeterminantofAiswrittenas|A|= .

Remarks

(i) For matrix A, |A|isread as determinant of A and not modulus of A.
(i) Only sguare matrices have determinants.

4.2.1 Determinant of a matrix of order one
Let A =[a] bethe matrix of order 1, then determinant of A is defined to be equal to a

4.2.2 Determinant of a matrix of order two

Let A= [aﬂ aiz} be amatrix of order 2 x 2,
3 ay
then the determinant of A is defined as:
all P alz
det (A) =|A|=A= l—'xl‘\a =a,a, —a,d,
21 22

Example 1 Evaluate

4
-1 2|’

Solution We have

4
3 2‘ =2 -4-1)=4+4=8

X x+1
Example 2 Evaluate

x-1 X
Solution We have

X X+1

w1 =X(X)—-(x+D (x=1) =x2-(x-1D)=xt-x2+1=1

4.2.3 Determinant of a matrix of order 3 x 3

Determinant of amatrix of order three can be determined by expressing it in terms of
second order determinants. This is known as expansion of a determinant along
arow (or a column). There are six ways of expanding a determinant of order
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3 corresponding to each of three rows (R;, R, and R,) and three columns (C,, C, and
C,) giving the same value as shown below.

Consider the determinant of square matrix A = [a/],,

a; a4 A3
e, |[Al=|3y ap ax

83 83 dg
Expansion along first Row (R))

Multiply first element a, of R, by (=1)®* b [(=1)*m o' sfxesinay] and with the
second order determinant obtained by deleting the elements of first row (R)) and first
column (C) of |A|asa, liesinR and C,
8y 8y
83 g

Multiply 2nd element a,, of R, by (=1)**2 [(=1)»m ' ffxesina;] and the second
order determinant obtained by deleting elements of first row (R,) and 2nd column (C,)
of |[Alasa,liesinR and C,,

ie, ) ta,

y Ay
83 g
Multiply third element a,, of R, by (—1)** 3 [(—1)m o «ffixesina.] gand the second

order determinant obtained by deleting elementsof first row (R,) and third column (C,)
of [Alasa,liesinR and C,

e, -1)'*?a,

& Ay
A A

Now the expansion of determinant of A, that is, | A | written as sum of all three
termsobtained in steps 1, 2 and 3 above is given by

ie, D 3a,

8y 83 142 a ax
= = (—1)1+1 + (-1
A=A (D ay |, g | T R2ly o
_q)i+3 & ap
+ (D" a 8
or IAl =a; (322 a3 — Ay, 323) -4, (321 A — 8y azs)

ta, (a21 A — 8y azz)
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=a, A, A Ay A8, 8, &, At A, 8,8, 13,8, &,
8558y Ay .. (1)

[ Note |We shall apply all four steps together.

Expansion along second row (R,)

a; Qp &3
[A]=[8n 82 8z
3 83 g3
Expanding along R,, we get

+ , 943 242 3y A3
INELG + (=)
A “ay an oy ay
&,
+(_1)2+3a
4 3 8y

=-a, (a,a,-a,ay) +a,(,a,-a,a))
— (a11 Ay — ay a12)
|A|=_a21 A, T, 8,8, 1a,a,38,;-3,38,38,—a,3,3,

" a'23 a3l alZ
=, &, 8, -a,;,8,8,-8a,38, a,*ta,a,a, ta,a, a,
— 8,8, &y, (2)
Expansion along first Column (C))
&y ap Q3
[Al=]82 ayn ay
33 33 ag
By expanding along C,, we get
+ a a + a12 a13
_ al (_1)1 1 22 23 +a2 (_1)2 1
Al ! & g . & Az
ap &
_1 3+1 12 3
+ 8y (1) a, a,

=a11(azza33_azaa32)_azl(auass_alsaaz)+a'31(a12623_a13622)
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|A|=a11a22a33_a11a23a32_a21a12a33+a21a13a32+a31a12a23
-8y 8,48,

=, 8,8, 8, 8,3,-a,8, 8, ta,a,a,;, +a,a, a,
—a, a31_ a, ) Lo )
Clearly, values of |A]in (1), (2) and (3) are equal. It isleft as an exercise to the
reader to verify that the values of |A| by expanding along R,, C, and C, are equal to the
value of |A | obtained in (1), (2) or (3).

Hence, expanding a determinant along any row or column gives same value.
Remarks

(i) Foreasier calculations, we shall expand the determinant along that row or column
which contains maximum number of zeros.

(i) Whileexpanding, instead of multiplying by (—1)'*J, we can multiply by +1 or -1
according as (i +j) is even or odd.

2 2 11
(iii) LetAz{4 0} ande[2 0} . Then, itiseasy to verify that A = 2B. Also

IA|=0-8=-8and|B|=0-2=-2.

Observe that, |[A| = 4(-2) = 2?|B| or |A| = 2"|B|, where n = 2 is the order of
square matrices A and B.

In genera, if A = kB where A and B are square matrices of order n, then | A| = k"
|B|, wheren=1,2,3
1 2 4

Example 3 Evaluate the determinant A=|-1 3 0|,
4 1 0

Solution Notethat in the third column, two entries are zero. So expanding along third
column (C,), we get

‘—1 3 1 2 1 2‘
A=4

4 1 |4 1| |1 3
= 4(-1-12)-0+0 =—52

0 sina —Ccosa

Example 4 Evaluate A = |[-sina. 0 sin B
cosa —-sinf 0
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Solution Expanding along R, we get
0 sinfB

-snpB O

=0-sna (0-sinPBcosa)—cosa (snasinP —0)
=snasinfcosa—cosasinasinfB=0

—-sina 0
cosa —sinf

A=0

X 3 2
Example 5 Find values of x for which = .
1 4 1
_ 3 X 3 2
Solution We have =
1 4 1
i.e 3—-x*=3-8
i.e X =8
Hence x=i2x/§
|[EXERCISE 4.1|
Evauate the determinants in Exercises 1 and 2.
. 2 4
|5 -1
_|cos® —sin® X =x+1 x-1
0 snO® coso (1) x+1 X+1
1 2
3. If A= 4 2 , then show that | 2A | =4 |A |
1 0 1
4. 1f A=|0 1 2] thenshowthat |3A|=27|A|
10 0 4

5. Evauate the determinants
3 -1 2 3 -4 5

@ lo o -1 @i |1 1 -2
3 5 0 2 3 1




(i)

6. IfA=

2
5

7. Findvaluesof x, if

12 4
(.)‘51_

X
18
(A) 6

8. If

2
X

4.3 Propertiesof Deter minants

Inthe previous section, we have learnt how to expand the determinants. In this section,
wewill study some propertiesof determinantswhich smplifiesitsevaluation by obtaining
maximum number of zeros in a row or a column. These properties are true for
determinants of any order. However, we shall restrict ourselves upto determinants of

order 3 only.
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2 2 -1 2
-3 (iv) |0 2 -1
0 3 5 0
-2
=3 |, find |A|
-9
2X 4 12 3 X 3
= ii =
6 X (i) 4 5 2X 5
6 2
, then xisequal to
18 6‘ =
(B) 6 (C) -6 (D) O

Property 1 The value of the determinant remains unchanged if its rows and columns

are interchanged.

8 a a
Verification Let A=|b b, b,

G & G
Expanding along first row, we get
b, b b b by
= - +a
\ al|cz o %o o g

= al (b2 C3

_bacz)_az(blca_bs

b,
G

Cl) ta, (bl C, —-

b2 Cl)

By interchanging the rows and columns of A, we get the determinant

a b ¢
8 b ¢
b, c
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Expanding A, along first column, we get
Alz a (bz ¢, —G bs) - & (bl G~ b3 Cl) ta, (bl ¢, - bz Cl)
Hence A=A,

Remark It follows from above property that if A is a square matrix, then
det (A) = det (A’), where A" = transpose of A.

If R = ith row and C. = ith column, then for interchange of row and
columns, we will symbolicaly writeC <> R

Let us verify the above property by example.

2 3 5
Example 6 Verify Property 1fora=16 0 4
1 5 7
Solution Expanding the determinant along first row, we have
A:Z‘O 4‘_(_3)‘6 4, |6 0‘
5 7 1 -7 15

=2(0-20)+3(—42-4)+5(30-0)
=-40-138+150=-28
By interchanging rows and columns, we get

2 6 1
A =|=3 0 5| (Expandingaongfirst column)
5 4 —7
0 5 6 1 6 1
=2 ~ (3 +5
4 -7 4 -7 0 5

=2(0-20)+3(—42-4)+5(30-0)

=—-40-138+150=-28
Clearly A=A
Hence, Property 1 is verified.
Property 2 If any two rows (or columns) of a determinant are interchanged, then sign
of determinant changes.

a4 & &

Verification Let A= [b b, by

G & G
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Expanding along first row, we get
A=a1(b2c3—b3 Cz)_az(blca_bs Cl) +a3(b1C2_b2 Cl)
Interchanging first and third rows, the new determinant obtained is given by

G & G
A=|b b Db
& & &
Expanding along third row, we get
Alz 2 (Cz bs - bz Cs) - & (Cl bs ) bl) +a, (bz C, - b1 Cz)
=_[a1 (bz Ca_bs Cz) -8 (bl C; — b3 Cl) ta (bl Cz_bz Cl)]
Clearly A, =-A
Similarly, we can verify the result by interchanging any two columns.

| Note|We can denote the interchange of rows by R «> R and interchange of
columns by C <> C.

2 3 5
Example 7 Verify Property 2forA=|6 0 4],
1 5 7
2 3 5
SolutionA=16 0 4| =—-28 (See Example 6)
1 5 -7

Interchanging rows R, and R, ie, R, & R, we have

2 3 5
Al =11 5 7
6 0 4

Expanding the determinant A, along first row, we have

5 -7 1 7 15
0 4 6 4 6 0
=2(20-0)+3(4+42) +5(0—-30)
=40+138-150=28

A =2

1

-3
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Clearly A =—A

Hence, Property 2 is verified.

Property 3If any two rows (or columns) of adeterminant areidentical (all corresponding
elements are same), then value of determinant is zero.

Proof If we interchange the identical rows (or columns) of the determinant A, then A
does not change. However, by Property 2, it followsthat A has changed its sign

Therefore A=—A
or A=0
Let us verify the above property by an example.

3 2 3

Example 8 EvaluateA =2 2 3
323

Solution Expanding along first row, we get
A=3(6-6)-2(6-9) +3(4-6)
=0-2(3)+3(-2)=6-6=0
Here R, and R, are identical.

Property 4 1f each element of arow (or acolumn) of adeterminant ismultiplied by a
constant k, then its value gets multiplied by k.

a b ¢
Verification LetA= |2 B, G
3 b oG

and A, be the determinant obtained by multiplying the elements of the first row by k.
Then

ka, kb ke
A=|3 b, ¢
8 b G

Expanding along first row, we get
A1=kal(b2C3—b3C2)—kbl (8203—0233) + kCl (az bs_bzaa)
=k[a1 (b2C3—b3C2)—bl (3203_Cza3) +C (82 bs_bzas)]
=k A
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G
Hence a b ¢|=k|a b ¢
G

Remarks

(i) By this property, we can take out any common factor from any one row or any
one column of agiven determinant.

(i) If corresponding elements of any two rows (or columns) of a determinant are
proportional (in the sameratio), then itsvalueis zero. For example

& a; &
A=|b b by =0(owsR, and R, are proportional)
ka, ka, ka,
102 18 36
Example 9 Evauate | 1 3 4
17 3 6

102 18 36| [6(17) 6(3) 6(6) [7 3 6
Solution Notethat | 1 3 4|=| 1 3 4 |=6|1 3 4/=0
17 3 6| |17 3 6 17 3 6

(Using Properties 3 and 4)
Property 5 If someor all elements of arow or column of adeterminant are expressed

as sum of two (or more) terms, then the determinant can be expressed as sum of two
(or more) determinants.

& th thi, a3+ y & T Mo oAy Ag
For example, b, b, b, =|b b, b+ b, b
G G G G & G G G G

aq+h a+A, A+
Verification L.HS. =| b b, b,
G G G
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Expanding the determinants along the first row, we get
Az(a‘l-}-}\‘l) (bz C;—G ba) _(a2+7”2) (bl Cs_bs Cl)

+ (aa + 7‘3) (bl C,— bz Cl)

=a1(b2 G~ G bs)_az(bl Cs_bs Cl) + a3(bl Cz_bz Cl)
+ 7"1 (bz C;—GC ba) - ?"2 (bl C;— bs Cl) + )“3 (bl C,— bz Cl)

(by rearranging terms)
& a, 8| (A Ay Ag
=|b b, bjj+/b b by =RHS

G & G G & G
Similarly, we may verify Property 5 for other rows or columns.

a b c
Example 10 Show that |[a+2xX b+2y c¢c+2z/=0
X y z
a b c a b c a b c
Solution We have|a+2x b+2y c+2z| =|a b c|+|2x 2y 2z
X y z Xy z X y z
(by Property 5)
=0+0=0 (Using Property 3 and Property 4)

Property 61f, to each element of any row or column of adeterminant, the equimultiples
of corresponding elements of other row (or column) are added, then value of determinant
remainsthe same, i.e., the value of determinant remain sameif we apply the operation
R - R+kRorC —C+kC.

Verification
aQ & o a +ke @ +ke, a+Kke
Let A=|b B bjand A =| b b, b, |,
G & G G > G

where A, is obtained by the operation R, - R, + kR, .

Here, we have multiplied the elements of the third row (R,) by a constant k and
added them to the corresponding elements of the first row (R)).

Symbolically, we write this operationasR, — R, + kR..
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Now, again

a & &| |kg ko kg
A =|b b by+b b b (Using Property 5)
G & G G & G
=A+0 (since R, and R, are proportional)
Hence A=A,
Remarks

(i) 1If A, isthe determinant obtained by applying R — kR, or C. — kC, to the
determinant A, then A, = KA.

(i) 1f morethanoneoperationlikeR — R + kR]. isdonein one step, care should be
taken to see that a row that is affected in one operation should not be used in
another operation. A similar remark appliesto column operations.

a a+b a+b+c
Example 11 Prove that [2a 3a+2b 4a+ 30+ 2c |=a’.
3a 6a+3b 10a-+6b+3c

Solution Applying operations R, — R, — 2R, and R, — R, — 3R, to the given
determinant A, we have

a+b a+b+c

Q

A=]10 a 2a+b
3a 7a+3b

o

Now applying R, — R, —3R,, we get

a a+b a+b+c
A= 0 a 2a+b
0 a

o

Expanding along C,, we obtain

a 2a+b
0

A=a

‘+0+0

za(@-0)=a(®=at
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Example 12 Without expanding, prove that

X+Y Y+2Z Z+X

A= z X y |=0

1 1 1

Solution Applying R, — R, + R, to A, we get
X+Y+2Z X+y+2z2 X+y+2z
A= z X y

1 1 1

Since the elements of R, and R, are proportional, A = 0.
Example 13 Evaluate

1 a bc
A=|1 b ca
1 c ab
Solution Applying R, - R, - R, and R, — R, — R, we get
1 a bc
A=10 b—a c(a—-b)
0 c-a b(a-c)

Taking factors (b —a) and (c —a) common from R, and R,, respectively, we get

1 a bc
A=((b-a((c-a|l0 1 —c
01 -b

=(b—a) (c—a) [(—b + ¢)] (Expanding along first column)
=(@-b)y(b-c) (c—a)

b+c a a
Example 14 Provethat | b c+a b |=4abc
c c a+b
b+c a a

SolutionLet A=| b c+a b
c c a+b
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Applying R, — R —R,—-R,1t0A, we get
0 -2 -2b
A=|b c+a b
c ¢ a+b
Expanding along R,, we obtain

c+a b c+a

b b
—(-2c —2b
c a+b ( )‘c a+b‘+( )‘
=2c(ab+b*-bc)—2b(bc-c?—ac)
=2abc+2ch?-2bc®-2b’c+ 2bc®+ 2abc
=4 abc

A=0

C C

X X 1+X
Example 151f x, y, zare different and A=|y y* 1+ y°’|=0, then
z 7 1+7
show that 1 + xyz=0
Solution We have

X X2 1+x°
A=ly ¥ 1+y°
z 22 1+2
X X X XX X
=y ¥* 14|y ¥’ Y| (Using Property 5)
z 7 z 22 Z
1 x x° 1 x X2
= (DL y Vi+xyzll y VP (Using C,«>C, and then C, <> C))
1 z 7 1 z 7
1 x X2
=1y Y|(+xy2)

1 z 2
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1 X NG

= (1+xy2)0 y-x Y —x° (Using R,»R R, and R, > R-R)
0 z-x Z2-X
Taking out common factor (y —X) from R, and (z - x) from R,, we get

1 x x

A= (1+xyz) (y=X) (z=X)[0 1 y+X
0 1 z+x

=(1+xy2) (y—X) (z—X) (z—y) (on expanding along C))
SinceA =0and x, y, zare all different, i.e, x—y#0,y—z#0, z—x # 0, we get
1+xyz=0
Example 16 Show that

l1+a 1 1
1 1+b 1 :abc(l+1+%+lj:abc+bc+ca+ab
a C
1 1 1+c

Solution Taking out factors a,b,c common from R, R, and R,, we get

1

[
+
RN

L.H.S = abc %+1

H
ol ok

I

|
+
=

Q|-
Ol Tk

Applying R — R, + R, + R,, we have

1 11 1 11 1 11
1+—+—+— 1+—4+—+— 1+—4+—+-
a b c a b c a b c
A = abc 1 1+1 1
b b b
1 1 1
c c
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= abc(l+1+£+ij
a b c

Olkr Tl
o

Now applying C,— C,—-C, C,— C,—C, we get
1 00

A:abc(l+£+£+£) 10

a b ¢

01

Ol T|F

1

:dx@ﬁ£+%+{ﬁuLﬂﬂ

a C

1 11
= abc(1+5+6+zj =abc+bc+ca+ab=RH.S

| == Note| Alternately try by applying C, —» C, - C, and C, — C, — C,, then apply
C,>C -acC,

EXERCISE 4.2

Using the property of determinants and without expanding in Exercises 1 to 7, prove
that:

X a x+a a-b b-c c-a

1. |y b y+b=0 2. |[b-c c-a a-b=0
Z Cc z+cC c-a a-b b-c
2 7 65 1 bc a(b+c)

3. |13 8 75=0 4. 1 ca b(c+a)=0
5 9 86 1 ab c(a+b)
b+c q+r y+z a p X

5 |c+a r+p z+x|=2b q vy
a+b p+q X+y cr z
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2

0 a -b -a° ab ac
6. |[-Fa 0 —c|=0 7 |ba -b* bc|=4a’b’c?
b ¢ 0 ca ¢ -

By using properties of determinants, in Exercises 8 to 14, show that:

1 a a°
8. () 1 b b*=(a-b)(b—c)(c-a)
1 ¢ c?
1 1 1
(i) |la b c|=(a-b)(b-c)(c-a)(a+b+c)
a b
X X yz
0. [y ¥V 2=(x=y) (y-2) (2=%) (xy +yz+ )
z 722 xy

X+4 2X 2X
10. () | 2x  x+4  2x |=(5x+4)(4-x)’
2X 2X  X+4

ytk vy y
()| vy vy+k y |=K*(3y+kK)
y y ytk
a-b-c 2a 2a
1. ()| 2 b-c-—a 2b |=(a+b+c)’
2c 2c c—-a-b
X+ Yy+2z X y

(i) z y+2Z+2X y |=2(x+ y+z)3
z X Z+X+2y



12.

13.

14.
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1 x X2

XX 1 X =( —x3)2

x x* 1

1+a® - b? 2ab ~2b
2ab  1-a?+b? 2a :(1+ a? + b2)
2b 2a 1-a*-b°

a’+1 ab ac
ab b*+1 bc |[=l+a®+b*+c?

ca cb 2+

Choose the correct answer in Exercises 15 and 16.

15.

16.

Let A be a square matrix of order 3 x 3, then |kA | is equa to

(A) KIA| (B) K*|A| ©) KIA| (D) 3k|A]
Which of thefollowing is correct

(A) Determinant is a square matrix.

(B) Determinant is a number associated to a matrix.

(C) Determinant is a number associated to a square matrix.

(D) None of these

4.4 Areaof aTriangle
In earlier classes, we have studied that the area of a triangle whose vertices are

121

¥ .1
(X, ¥, (X, y,) and (x,, y,), is given by the expression E[xl(yz—y3) + X, (YY) +

X, (Y,=Y,)]. Now this expression can be written in the form of a determinant as

% %l
== 1
A=SI% Y,

Xy 1

Remarks
(i) Since area is a positive quantity, we always take the absolute value of the

determinantin (1).

e
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(i) If areais given, use both positive and negative values of the determinant for
calculation.
(iliy Theareaof thetriangle formed by three collinear pointsis zero.

Example 17 Find the area of the triangle whose vertices are (3, 8), (— 4, 2) and (5, 1).
Solution The area of triangle is given by

) 3 81
5 11
= %[3(2—1)—8(—4—5)+1(—4—1o)]
-l aireo1g)= &
2 2

Example 18 Find the equation of thelinejoining A(1, 3) and B (0, 0) using determinants
and find k if D(k, 0) is a point such that area of triangle ABD is 3sq units.

Solution Let P(x, y) beany point on AB. Then, areaof triangleABPiszero (Why?). So

10 0
=1 3 =0
2
Xy
. 1
Thisgives E(y—3X) =0ory=3x

which isthe equation of required line AB.
Also, since the area of the triangle ABD is 3 sq. units, we have

13
%0 0 1=+3
k O
This gives, _—:k:iS, e, k=% 2.
|[EXERCISE 4.3
1. Find areaof thetriangle with vertices at the point given in each of thefollowing :
() (1,0),(6,0), (43 (i) (2,7),(1,1),(10,8)

(i) (=2,-3),(3,2),(-1,-9)
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2. Show that points
A(@ b+c),B (b c+ a),C(c, a+ b)arecollinear.

3. Find values of kif areaof triangle is 4 sq. units and vertices are
(i) (k0),(40),(0 2 (i) (<2,0),(0,4),(0.K

4. (i) Findequationof linejoining (1, 2) and (3, 6) using determinants.
(i) Findequation of linejoining (3, 1) and (9, 3) using determinants.

5. If areaof triangleis 35 sg unitswith vertices (2, — 6), (5, 4) and (k, 4). Thenkis
(A) 12 (B) -2 (C) —12,-2 (D) 12,2

4.5 Minorsand Cofactors

In this section, we will learn to write the expansion of a determinant in compact form
using minors and cofactors.

Definition 1 Minor of an element a_ of a determinant is the determinant obtained by
deleting itsith row and jth columnin which element a, lies. Minor of an element &, is
denoted by M,..

Remark Minor of an element of a determinant of order n(n > 2) is a determinant of
order n— 1.

Example 19 Find the minor of element 6 in the determinant A =

N & -
™ g N

3
6
9
Solution Since 6 liesin the second row and third column, itsminor M., is given by

2
M., ‘7 8 =8—14 =6 (obtained by deleting R, and C, in A).

Definition 2 Cofactor of an element a, denoted by A, is defined by
A, = (1) My, where M, is minor of a,.

Example 20 Find minors and cofactors of all the elements of the determinant

-2
. ]
Solution Minor of the element a, is M,

Herea,, = 1. So M, = Minor of a,= 3

M, = Minor of the element a, = 4

M., = Minor of the element a, = -2
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M., = Minor of the element a, = 1
Now, cofactor of a, isA”.. So

A =D M, =(-1D)*(®) =3
Ap=ED)2 M, =(-1)° (4 =-4
A, =)t M, = (13 (2 =2
Ap=(ED"2 My, =)' () =1

Example 21 Find minors and cofactors of the elements a,,, a,, in the determinant

&1 Qp 3
A=18 @8pn ax
83 83 agx
Solution By definition of minors and cofactors, we have
_ ~ B2 Qs
Minor of &, =M, = Ay, Bg| 8y 3~ 8y Ay
Cofactor of a, =A, = (-1)"* M, =a, a,—a,a,
_ , A3
Minor of &, = M,, = 8y By e A%

Cofactor of G = A21 = (-1 M21 =D (6‘12 ap—a,ay,) = -a,a,t a,a,;,
Remark Expanding the determinant A, in Example 21, along R, we have

a. a,
a.23 21 22

8y Ay + Mz ay
83 A3 1 a, 83 g3
=a, A, +a,A, +a,A, where A”. is cofactor of 3,
= sum of product of elements of R, with their corresponding cofactors
Similarly, A can be calculated by other fiveways of expansionthatisalong R, R,,
C, C,and C,.
Hence A = sum of the product of elements of any row (or column) with their
corresponding cofactors.

A= (1, D A fay A

If elements of arow (or column) are multiplied with cofactors of any
other row (or column), then their sum is zero. For example,
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A= a11 A21 + a12'“22 + a13A23

8 &3 &1 G a, a,
= _1 1+1 + _1 1+2 o _1 1+3
2, 8y g3 2, D Ay g % (1) 3y A
q; 3, a3
= |31 & &g|=0(since R andR, areidentical)
A 3y ag

Similarly, we can try for other rows and columns.

Example 22 Find minors and cofactors of the elements of the determinant

2 3 5
6 0 4|andverifythata, A, +a,A,+a,A =0
1 5 -7

0 4
Solution We have M, = ‘5 _7‘ =0-20=-20; A}, = (-1)**(-20) =20

6 4

M,=|] | =-42-4=-46,  A,=(-1)"?(-46) =46
6 0

M,=|; 5| =30-0=30; A, = (-1)**(30) = 30
3 5

M, =|g 4=21-25=-4 A, = (1)1 (-4) =4
2 5

M, =|; _of =-14-5=-19, A, = (-1)?(-19) = 19
2 -3

M,=|, 5|=10+3=13 A, = (-1)22(13) = 13
3 5

M, = 4 =-12-0=-12 A, = (-1 (-12) = 12
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2 5
R T
2 -3
ad M=l |=0+18=18 A= (-1)*3(18) = 18

Now a,=2a,=-3a,=5 A, =-12,A,=22,A_ =18

3) a11 ASl + a12 A32 + a13 A33
=2 (~12) + (=3) (22) + 5(18) =—24—66 + 90 = 0

|EXERCISE 4.4
Write Minors and Cofactors of the elements of following determinants:
1o P _4‘ iy |2 €
3 b d
100 10 4
2. (|0 10 (i) |3 5 -1
0 01 01 2
5 3 8
3. Using Cofactors of elements of second row, evaluateA= {2 0 1|,
1 2 3
1 x yz
4. Using Cofactors of elements of third column, evaluate A = 1y z|.
1 z xy
a; ap 3
5. IfA=|ay a8y, ay andAij is Cofactors of alj,thenvalueofAisgiven by
83 83 &g

(A) a‘ll A31+ a'12 A32 + a13 A33 (B) a11 A11+ a'12 A21 + a13 A31
(C) a21 All+ a22 A12 + a'23 A13 (D) all A11+ aZl A21 + 831 A31
4.6 Adjoint and Inverseof aMatrix

In the previous chapter, we have studied inverse of amatrix. In this section, we shall
discuss the condition for existence of inverse of amatrix.

Tofind inverse of amatrix A, i.e., A7 we shall first define adjoint of a matrix.
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4.6.1 Adjoint of a matrix

Definition 3 The adjoint of a square matrix A = [a”.]nx , 1S defined as the transpose of
the matrix [A”.]nx . WhereAij isthe cofactor of the element a,. Adjoint of the matrix A
is denoted by adj A.

&1 Qp &3
Let A=lay 8y ay
83 83 ag
All A12 Al3 All A21 A31
Then adjA=Transposeof | A,; A, Ay | =|AL A, Ay
A31 A32 A33 A13 A23 A33
, . 2 3
Example 23 Findadj A for A = 14
Solution Wehave A, =4,A,=-1,A, =3 A, =2
Hence adj A = A Am} :{4 _3}
AT 1AL, Ayl |1 2
Remark For a square matrix of order 2, given by
A= N 312}
Ay Ay

Theadj A can also be obtained by interchanging a,, and a,, and by changing signs

ofa,anda,,ie,
gy L

Change sign Interchange
We state the following theorem without proof.
Theorem 1 If A be any given square matrix of order n, then
A(adj A) = (adj A) A = |A]I,

where | istheidentity matrix of order n
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Verification
q; 8, a3 An Ax Ay
Let A=|8n 8np au| thenadj A= |Apn An Ay
A 8y ag Az Ap Ay

Since sum of product of elements of a row (or a column) with corresponding
cofactorsis equal to |A | and otherwise zero, we have

Al 0 0 100
AadjA)=| 0 |A] 0|=1]aA] [0 1 O|=|A]I
0 0 |A| 001

Similarly, we can show (adj A) A = |A| |
Hence A (adj A) = (adj A) A = |A| |

Definition 4 A square matrix A is said to be singular if |A| = 0.

1 2
For example, the determinant of matrix A = 4 8 iszero

Hence A isasingular matrix.

Definition 5 A square matrix A is said to be non-singular if |A| # 0

1 2 1 2
Let Az{?’ 4]ThenlAlz‘3 A‘=4—6:—2¢O.
HenceA isanonsingular matrix
We state the following theorems without proof.

Theorem 2 If A and B are nonsingular matrices of the same order, then AB and BA
are also nonsingular matrices of the same order.

Theorem 3 The determinant of the product of matrices is equal to product of their
respective determinants, that is, |AB| = |A| |B|, whereA and B are square matrices of
the same order

Al 0 ©
Remark We know that (adj A)A=|A| 1= 0 [A] 0

0 0 |A
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Writing determinants of matrices on both sides, we have

Al 0 0
(adi A)A| = |0 |A] 0O
0 0 |A
100
ie. adj A)| Al = |Afj0 1 © (Why?)
00 1
e |(adj A)[ [A]=[AF (1)
ie. (adj A)| = |A ]

In genera, if A isa square matrix of order n, then |adj (A)| = |A "~
Theorem 4 A square matrix A isinvertibleif and only if A isnonsingular matrix.

Proof Let A beinvertible matrix of order n and | be the identity matrix of order n.
Then, there exists a square matrix B of order n such that AB = BA = |

Now AB=I. S0 |AB| = |I| or |A| |B] =1 (since|l|=L|AB|=|A||B])
Thisgives |A|# 0. Hence A is nonsingular.

Conversely, let A be nonsingular. Then |A| 0

Now A (adj A) = (adj A) A = |A] (Theorem 1)
1 . 1 .

or A —adeJ=(—adeJA=|

[IAI |A]

1,

or AB:BAzl,whereB=madJA

b . 1 _.
Thus Aisinvertibleand A = madJA

, then verify that A adj A = |A| . Also find A=

w b~ W
A W W

1
Example24 1f A= 1
1

Solution We have |A| =1(16-9) -3(4-3) +3(3-4)=1=0
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NowA, =7 A,=-1A,=-1A, =3, A,=1A_.=0A,=-3A,=0,
A33:1
7 -3 -3
Therefore ajA=|-1 1 O
-1 0 1
1 3 3][ 7 -3 -3
Now A(dA)=|14 3||-1 1 0
1 3 4|][-1 0 1
[7-3-3 -3+3+0 -3+0+3
=|7-4-3 -3+4+0 -3+0+3
| 7-3-4 -3+3+0 -3+0+4
1 00 1 00
=10 1 0/=() [0 1 0|=|A|.I
10 01 0 01
L 7 -3 -3 7 -3 -3
Also At L oadja =3-1 1 o|=|-1 1 0
Al !

-1 0 1| |-1 0 1

-1 3

2 3|1 -2||-1 5
Solution We have AB = { H }:{ }

2 3 1
Example 25 If A = L _4} and B ={ } then verify that (AB)* = B*A.

1 -4]|-1 3 5 -14

Since, |AB| =-11# 0, (AB) exists and is given by

1 . 1[-14 -5 1[14 5}
1= — adj (AB)=—— =—
(AB) |AB| J( ) 11|: -5 _} 1115 1

Further, |A| =—11#0and |B| = 1+ 0. Therefore, A~ and B both exist and are given by
1 4 3 3 2

1

A=

11 1 2 11



DETERMINANTS 131

32 4 3
Therefore B'A* i i 145 = 1{1:' ﬂ

1111 1 2 11 5 1 1
Hence (AB)! =B1!A?

2 3
1 2 satisfies the equation A2— 4A + 1= O,

wherel is2 x 2 identity matrix and O is 2 x 2 zero matrix. Using thisequation, find A=

2 3||2 3 7 12
Solution We have A2=A . A= [ M }:{ }

Example 26 Show that the matrix A =

1 2j|1 2| |4 7
) 7 12 8 12 10 00
Hence A —4A+1= - + = =0
4 7 4 8 01 00
Now A2—4A +1=0
Therefore AA—-4A =1
or A AAY)-4AAT=—1A? (Post multiplying by A= because |A| # 0)
or AAAY) -4 =-A1
or Al -4 = —A7
4 0| (2 3 2 -3
Ryl A —_ N =
or A—4I—A—04 1 2 1 2
v 4 2 -3
Hence .1 o
|EXERCISE 4.5
Find adjoint of each of the matricesin Exercises 1 and 2.
1 12
1. ;i 2. 2 3 5
2 0 1
Verify A (adj A) = (adj A) A =|A| | in Exercises 3 and 4
1 1 2
2 3
3 0 2
3. 4 6 4.

1 0 3
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Find the inverse of each of the matrices (if it exists) given in Exercises 5 to 11.

11.

12.

13.

14.

15.

16.

17.

18.

12 3
2 2 6.15 L 024
4 3 3 2 00 5
10 0 2 1 3 1 1 2
330 9 4 10 0. 0 2 3
52 1 7 2 1 3 2 4
1 0 0

0 cosa. Sna
0 sna -—cosa

L A-37 dB—68 Verify that (AB)™ = B* A
et—25an—79.er|ytat()—B .

3 1
If A= 1 2 , show that A2 —5A + 71 = O. Hence find A

3 2
For the matrix A = 11 , find the numbers a and b such that A2+ aA + bl = O.

1 1 1
For thematrixA= 1 2 3
2N, B
Show that A®~6A2+ 5A + 111 = O. Hence, find A=

2 11
fA= 1 2 1
1 1 2
Verify that A® —6A% + 9A — 41 = O and hence find A=
Let A be anonsingular square matrix of order 3 x 3. Then |adj A|isequal to
(A) |A] (B) IAP © IAF (D) 3JA]
If A isan invertible matrix of order 2, then det (A) isequal to

1
(W) ) B ga ©1 (D) 0
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4.7 Applicationsof Determinantsand Matrices

Inthissection, we shall discuss application of determinants and matricesfor solving the
system of linear equationsin two or three variablesand for checking the consistency of
the system of linear equations.

Consistent system A system of equationsis said to be consistent if its solution (one
or more) exists.

Inconsistent system A system of equations is said to be inconsistent if its solution
does not exist.

|a= NotelIn this chapter, we restrict ourselves to the system of linear equations
having unique solutionsonly.

4.7.1 Solution of system of linear equations using inverse of a matrix
L et usexpressthe system of linear equations as matrix equations and solve them using
inverse of the coefficient matrix.

Consider the system of equations
ax+by+cz=d
ax+by+c,z=d,
ax+by+c,z=d,

a b ¢ X d,
Let A=|a, b, ¢ |, X=|y|andB=|d,
a; by ¢ z d;
Then, the system of equations can be written as, AX =B, i.e,,
a b oo |x| [d
& b ||y =|d;
a; by ]|z d;
If A isanonsingular matrix, then itsinverse exists. Now
AX=B
or AT (AX)=A'B (premultiplying by A™)
or (AA) X =A'B (by associative property)
or IX=A"B
or X=A*1B

Thismatrix equation provides unigue solution for the given system of equationsas
inverse of amatrix isunique. This method of solving system of equationsis known as
Matrix Method.
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If Alisasingular matrix, then |A|= 0.
In this case, we calculate (adj A) B.

If (adj A) B # O, (O being zero matrix), then solution does not exist and the
system of equationsis called inconsistent.

If (adj A) B = O, then system may be either consistent or inconsistent according
asthe system have either infinitely many solutions or no solution.

Example 27 Solve the system of equations
2xX+5y=1
X+2y=7
Solution The system of equations can be written in the form AX = B, where

i el

Now, |A| =—11 0, Hence, A is nonsingular matrix and so has a unigue solution.

Note that Al = 125
1 3 2
Therefore X=A"B=- RS 1
11 3 2 7
. X 1 3 3
€ M S W1
Hence x=3y=-1
Example 28 Solve the following system of equations by matrix method.
3X—-2y+3z=8
2xX+y—z=1
Ix—-3y+22=4
Solution The system of equations can be written in the form AX = B, where
3 -2 3 X 8
A=|2 1 -1,X=|y|andB=|1
4 -3 2 z 4

We see that
|A| =3(2-3)+24+4)+3(-6-4)=-17%0
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Hence, A isnonsingular and so itsinverse exists. Now

All =-1, A12 =-38, A13 =-10
A21 =5 A22 =-6 A23 =
A31 =-1 Asz =9 A33 =
1 -1 -5 -1
Therefore Al = 7 -8 -6 9
-10 1 7
1 -1 -5 -1{|8
S0 X=A'"B=-—| -8 -6 9|1
17
-10 1 7 ||4
X 1 =17 1
i.e yl=-—=|-34|=|2
17
z -51 8
Hence x=1,y=2andz=3.

Example 29 The sum of three numbersis 6. If we multiply third number by 3 and add
second number toit, weget 11. By adding first and third numbers, we get double of the
second number. Represent it algebraically and find the numbers using matrix method.

Solution Let first, second and third numbers be denoted by X, y and z, respectively.
Then, according to given conditions, we have
Xt+y+z=6
y+3z=1
X+z=2y orx—2y+z=0
This system can be written asA X = B, where

1 1 1 X 6
A= 0 1 3 X= Yy adB= 11
1 21 z 0
Here |A| 11 6 —(0—3 0-1 9 0. Now wefind adj A
A,=1(1+6)=7, A,=—(0-3)=3  A,=-1
A,=—(1+2=-3 A_=0, A, =-(-2-1)=3

A,=(B-1)=2 A,=—(3-0=-3 A ,=(1-0=1
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Hence

Thus

Since

or

Thus

1. x+2y=2
2x+3y=3

4. x+y+z=1
2X+3y+22=2

ax+ay+2az=4

7. 5Xx+2y=4
7x+3y=5
10. 5x+2y=3

3X+2y=5

7 3 2
ajA=|3 0 -3
1 3 1
7 3 2
A—l_iadj(A)—13 0 -3
A 13 1
X=A"B
7 3 27 e
X:l3 0 3|11
13 1 |0
X 42-33+0] 9 1
y _ 1|18+0+0/_1 18 _ 2
z 9 |-6+33+0] 2 27 3

x=1y=2,2=3

EXERCISE 4.6
Examine the consistency of the system of equationsin Exercises 1 to 6.
2. 2x-y=5 3. Xx+3y=5
X+y=4 2x+6y=8
5 3xy—-2z=2 6. Bx—y+4z=5
2y—z=-1 2X+3y+52=2
3X-5y=3 5x -2y +6z=-1
Solve system of linear equations, using matrix method, in Exercises 7 to 14.
8. 2Xx—-y=-2 9. 4x-3y=3
3x+4y=3 3X-5y=7
11. 2x+y+z=1 12. x—-y+z=4
x—2y—z=g 2Xx+y—-3z=0
3y—-5z=9 X+y+z=2

13. 2x+3y+3z=5
X—-2y+z=-4
X-y—-2z=3

14, X—y+2z=7
3X+4y—-5z=-5
2X—y+3z=12
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2 3 b5
15. If A=|3 2 —4| findA Using A solve the system of equations
1 1 =2
2Xx—-3y+5z2=11
3X+2y—4z= -5
X+y—-2z= -3

16. Thecost of 4 kg onion, 3kgwheat and 2 kg riceisRs60. The cost of 2 kg onion,
4 kg wheat and 6 kg riceis Rs 90. The cost of 6 kg onion 2 kg wheat and 3 kg
riceisRs 70. Find cost of each item per kg by matrix method.

Miscellaneous Examples

Example 30 If a, b, ¢ are positive and unequal, show that value of the determinant

a b c

A=|b c aisnegative.

c ab

Solution Applying C, — C, + C, + C, to the given determinant, we get
a+b+c b c 1 b c
A=|a+b+c ¢ a =(a+b+c)|l ¢ a
a+b+c a Db 1 ab

1 b c
=(@+b+c)|0 c—b a-c|(ApplyingR—>R-R,adR,-»R-R)
0 a-b b-c
=(@+b+c)[(c-b)(b-c)-(a-c)(a—b)] (ExpandingaongC)
=(@a+ b+ c)(-a—b*~c?+ab+ bc + ca)

-1
> (a+ b+ ¢) (2a2+ 2b?+ 2¢? — 2ab — 2bc — 2ca)

_El (a+b+c)[(@a-b3?*+(b-c3+(c-a)]

which is negative (sincea+b+c>0and (a—b)? + (b—c)*+ (c—a)>> 0)
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Example 31 If a, b, ¢, arein A.P, find value of

2y+4 5y+7 8y+a
3y+5 6y+8 9y+b
4y+6 7y+9 10y+c

Solution Applying R, — R, + R,— 2R, to the given determinant, we obtain

0 0 0

3y+5 6y+8 9y+b | - (gncezb=a+0q)
4y+6 7y+9 10y+c

Example 32 Show that
(y+z) xy x
A=| Xy (+2) vz |=2yz(x+y+2?
Xz yz o (x+y)
Solution Applying R, = xR, R, = yR,,R, — zR, to A and dividing by xyz, we get

2

Xy z Xy X'z

1 2 2 2
A=— | Xy y X z y’z
Xz* vz2  zx vy’

Taking common factors x, y, z from C, C, and C,, respectively, we get

(y+z)° % X

A= 2z y o (x+z) Y
XyZ 2 2 2
z z (x+Y)

ApplyingC, - C~C, C, —» C~C,,we have

(y+ z)2 X —(y+ z)2 x> —(y+ z)2

A=| VYV (x+z)2—y2 0

z° 0 (x+y)’ -2
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Taking common factor (x +y + 2z) from C, and C,, we have

(y+2)° x—(y+2z) x—(y+2)
A=(x+y+22| ¥ (x+2)-y 0
z 0 (x+y)-12

Applying R, = R, — (R, + R)), we have

2yz -2z -2y
A=xX+y+2? |y X-y+z 0
z 0 X+Yy-2z

, 1 1
Applying C, — (C, + ; C)and C, C, EQ , We get

2yz 0 0
A=(X+y+2?2 |y X z y?
2 Zz
zZ — XY
y

Finally expanding dong R , we have
A=(X+y+2?(2yz) [(x+2) (x+Yy) -y = (X+y+2)?(2y2) (+Xy + X9
=(x+y+2°(2y2)
1 -1 2 =201
Example33Useproduct 0 2 -3 9 2 -3 tosolvethesystemof equations
3 2 4 6 1 =2
X-y+2z=1
2y—-3z=1
X—-2y+4z=2
1 -1 2||-2 0 1
Solution Consider theproduct |0 2 -3 9 2 -3
3 -2 4 6 1 -2
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-2- 9+12 0-2+2 1+3-4 1
=| 0+18-18 0+4-3 0-6+6|= 0
0

0
1
-6-18+24 0-4+4 3+6-8 0

= O O

1

1 -1 2 =2 0 1
Hence 0 2 -3 9 2 3
3 2 4 6 1 -2
Now, given system of equations can be written, in matrix form, asfollows
1 -1 2||x 1
0 2 3||ly|l=|1
3 2 4|z 2

x [1 -1 2T'71] =20 1
or y =10 23[1:92—3
z 13 -2 4] |2 6 2
-2+0+2 0
=| 9+2-6|= 5}
| 6+1-4 3
Hence x=0,y=5andz=3
Example 34 Prove that
a+bx c+dx p+0gx a c p
A= lax+b ox+d px+q|=(1-x*)b d q
u % w u v

Solution Applying R, = R, =X R, to A, we get

all-x*) c@l-x%) p@a-x3)
A=| ax+b cx+d px+q
u Vv w

a c p
= (1-x®)|lax+b cx+d px+q
u v W
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Applying R, - R, —x R, we get

ac p
A=(1-x)b d q
u v

Miscellaneous Exercises on Chapter 4

X sin® coso
1. Provethat the determinant|—sin®  —x 1 | isindependent of 6.
coso 1 X
a a bc 1 a &
2. Without expanding the determinant, provethat|b b* ca 1 b bl.
c ¢ ab 1 ¢ ¢

coso Cosf  cosa SN —sina
3. Evauate | —sinP cosp 0

sina. cosp  sina sinf  cosa
4. If a, band c are real numbers, and

b+c c+a a+b
A=|c+a a+b b+c/=0

a+b b+c c+a
Show that eithera+b+c=0ora=b=rc.

Xx+a X X
5. Solvetheequation | X Xx+a X |[=0,az0
X X  X+a
a’ bc ac ¢

6. Provethat @ ab b’ ac | = 4a2c?
ab b*> bc c’
3 -1 1 1 2 =2
7. IfA+=|-15 6 -5|andB=|-1 3 0 |, find(AB)"
5 2 2 0 2 1
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1 21

8. LeeA= -2 3 1 . Verifythat
1 1 5

(i) [adj A]™ = adj (A™) (i) (A=A
X y X+Yy

9. Evaluate| vy X+y X
X+y X y
1 X y

10. Evaluae 1 x+y 'y
1 x Xty

Using properties of determinantsin Exercises 11 to 15, prove that:

11.

12.

13.

14.

16.

o o’ B+y
B B v+o=B-7 (v—0) (@—=B) (a+B+7)
Yy 7 a+p
2 1 pX3
1 py’| =1+ pxy2 (X=Y) (Y—2) (z—X), where p is any scalar.
z z 1 pZ
3a -—atb -—-at+c
-b+a 3b -b+cl =3@+b+c)(ab+bc+ca)
—c+a —-c+b 3c
1 1+p 1+p+q sina. coso. cos(a +3)
2 3+2p 4+3p+2q| =1 15 |snB cosp cos(B+3)[=0
3 6+3p 10+6p+3q siny cosy cos(y+3d)
Solve the system of equations
2 310 ,
X y z
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x|
N | ol

[
<o

N

0

~= 2
V4

X | o
< |©

Choose the correct answer in Exercise 17 to 19.

17.

18.

19.

If &, b, c, arein A.P, then the determinant

X+2 X+3 X+2
X+3 Xx+4 x+2biS
X+4 X+5 x+2c

(A) O B) 1 (©) x (D) 2x
x 00
If Xy, zarenonzero real numbers, thentheinverseof matrix A=|0 y 0]is
0 0 z
x* 0 0 x* 0 0
(A)| 0 y* o0 (B) xz| 0 y* 0
0o z* 0o o z*¢
x 0 0 1 00
1 1
© —|0y O (D) —|0 1 0
2o 0 2 00 1
1 snd 1
LetA=|-sn® 1 snB| where0<0<2r Then
-1 -sn6 1
(A) Det(A)=0 (B) Det(A) € (2, )

(C) Det(A) e (2,4 (D) Det(A) € [2, 4]
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Summary

¢ Determinant of amatrix A =[a, ], isgivenby |a,|=a,

¢ Determinant of amatrix A 1 %2 isgiven by
a A
|A|=an 8|
ay, a_22_a11a22_a12321
a b ¢
¢ Determinantof amatrix A a, b, c, isgivenby (expandingalongR,)
a; by ¢
a b ¢
a a
e bool-al oonf Geafs
a b g

For any square matrix A, the |A| satisfy following properties.

¢ |A’'|=]|A|, where A’ = transpose of A.

¢ If we interchange any two rows (or columns), then sign of determinant
changes.

¢ If any two rowsor any two columns areidentical or proportional, then value
of determinant is zero.

¢ If wemultiply each element of arow or acolumn of adeterminant by constant
k, then value of determinant is multiplied by k.

¢ Multiplying a determinant by k means multiply elements of only one row
(or one column) by k.

¢ 1f A=[a]5 then|k. A|=k?|A|

¢ If elements of arow or acolumn in adeterminant can be expressed as sum
of two or more elements, then the given determinant can be expressed as
sum of two or more determinants.

¢ If to each element of arow or acolumn of adeterminant the equimultiples of

corresponding elements of other rows or columns are added, then value of
determinant remains same.
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Area of atriangle with vertices (x,, y,), (X, ¥,) and (X, Y,) is given by

x y 1
A= > X Y, 1
X Y3 1

Minor of an element &, of the determinant of matrix A is the determinant
obtained by deleting i"" row and j* column and denoted by M.

Cofactor of a, of givenby A, = (- 1)/ M,

Value of determinant of amatrix A isobtained by sum of product of elements
of arow (or acolumn) with corresponding cofactors. For example,

|A| = all All % a12 A12 s a13 A13'
If elements of onerow (or column) are multiplied with cofactors of elements

of any other row (or column), then their sum is zero. For example, a, A, +a,,
A22 i a13 A23 = 0

8y &y &3 An Ay Ay
If A=|a, 8, ax;| then adjA=|A, A, Aj;|,whereA, is
% A Ay Ap Axn Ag

cofactor of a,

A (adj A) = (adj A) A = |A]| |, where A is square matrix of order n.

A square matrix A is said to be singular or non-singular according as
|A|=0o0r |A|#0.

If AB = BA =1, where B is square matrix, then B is called inverse of A.
Also A* =B or B* = A and hence (A?)* = A.

A sguare matrix A hasinverseif and only if A isnon-singular.

1

Al=—
Al

(adj A)

¢ If ax+by+cz=d

ax+by+c,z=d,
ax+by+c,z=d,
then these equations can be written asA X = B, where

a b ¢ X d;
A=la, b, ¢ |, X=|ylandB=|d,

a b G z d;
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4 Unique solution of equation AX = B isgiven by X = A= B, where |A| #0.

@ A system of equation is consistent or inconsistent according as its solution
exists or not.

¢ For asquare matrix A in matrix equation AX =B
(i) |A|# 0, there exists unique solution
(i) |[A]=0and (adj A) B # 0, then there exists no solution
(i) |[A]=0and (adj A) B =0, then system may or may not be consistent.

Historical Note

The Chinese method of representing the coefficients of the unknowns of
several linear equations by using rods on a cal culating board naturally led to the
discovery of ssmplemethod of elimination. The arrangement of rodswas precisely
that of the numbersin adeterminant. The Chinese, therefore, early devel oped the
idea of subtracting columns and rows as in simplification of a determinant
‘Mikami, China, pp 30, 93.

Seki Kowa, the greatest of the Japanese Mathematicians of seventeenth
century in hiswork ‘Kai Fukudai no Ho' in 1683 showed that he had the idea of
determinants and of their expansion. But he used thisdevice only in eliminating a
quantity from two equations and not directly in the solution of aset of simultaneous
linear equations. ‘T. Hayashi, “The Fakudoi and Determinants in Japanese
Mathematics,” in the proc. of the Tokyo Math. Soc., V.

Vendermonde wasthefirst to recognise determinants asindependent functions.
He may be called the formal founder. Laplace (1772), gave general method of
expanding adeterminant in terms of its complementary minors. In 1773 Lagrange
treated determinants of the second and third orders and used them for purpose
other than the solution of equations. In 1801, Gauss used determinants in his
theory of numbers.

The next great contributor was Jacques - Philippe - Marie Binet, (1812) who
stated the theorem relating to the product of two matrices of m-columns and n-
rows, which for the special case of m= n reduces to the multiplication theorem.

Also on the same day, Cauchy (1812) presented one on the same subject. He
used theword ‘ determinant’ inits present sense. He gave the proof of multiplication
theorem more satisfactory than Binet's.

The greatest contributor to the theory was Carl Gustav Jacob Jacobi, after
this the word determinant received its final acceptance.



Chapter 5

CONTINUITY AND
DIFFERENTIABILITY

s The whole of science is nothing more than a refinement
of everyday thinking.” — ALBERT EINSTEIN +»

5.1 Introduction

This chapter is essentially a continuation of our study of IEiE=Ezr ity
differentiation of functions in Class XI. We had learnt to
differentiate certain functions like polynomial functions and
trigonometric functions. In this chapter, we introduce the
very important concepts of continuity, differentiability and
relations between them. We will also learn differentiation
of inverse trigonometric functions. Further, we introduce a
new class of functions called exponential and logarithmic
functions. These functions lead to powerful techniques of
differentiation. We illustrate certain geometrically obvious
conditions through differential calculus. In the process, we

will learn some fundamental theorems in this area. o P O ot
L. Sir Issac Newton
5.2 Continuity (1642-1727)

We start the section with two informal examples to get a feel of continuity. Consider
the function

£ 1,if x<0 Y
X)=

2,if x>0 A

This function is of course defined at every y=fx

point of the real line. Graph of this function is (0,2) ¢
given in the Fig 5.1. One can deduce from the
graph that the value of the function at nearby —9(0,1)
points on x-axis remain close to each other _ .
except at x = 0. At the points near and to the X< I[Q >X

left of 0, i.e., at points like — 0.1,-0.01,-0.001, %
the value of the function is 1. At the points near
and to the right of 0, i.e., at points like 0.1, 0.01, Fig 5.1
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0.001, the value of the function is 2. Using the language of left and right hand limits, we
may say that the left (respectively right) hand limit of f at O is 1 (respectively 2). In
particular the left and right hand limits do not coincide. We also observe that the value
of the function at x= 0 concides with the left hand limit. Note that when we try to draw
the graph, we cannot draw it in one stroke, i.e., without lifting pen from the plane of the
paper, we can not draw the graph of this function. In fact, we need to lift the pen when
we come to 0 from left. This is one instance of function being not continuous at x = 0.
Now, consider the function defined as

oy 1 X0
VT2 x =0

This function is also defined at every point. Left and the right hand limits at x =0
are both equal to 1. But the value of the
function at x = 0 equals 2 which does not
coincide with the common value of the left
and right hand limits. Again, we note that we
cannot draw the graph of the function without
lifting the pen. This is yet another instance of < I =

a function being not continuous at x = 0.

Naively, we may say that a function is lO
continuous at a fixed point if we can draw the Y’
graph of the function around that point without Fig5.2

lifting the pen from the plane of the paper.

Mathematically, it may be phrased precisely as follows:

Definition 1 Suppose fis a real function on a subset of the real numbers and let ¢ be
a point in the domain of f. Then fis continuous at c if

lim £(x) = f(c)

More elaborately, if the left hand limit, right hand limit and the value of the function
atx = c exist and equal to each other, then fis said to be continuous at x =c. Recall that
if the right hand and left hand limits at x = ¢ coincide, then we say that the common
value is the limit of the function at x= c. Hence we may also rephrase the definition of
continuity as follows: a function is continuous at x = c if the function is defined at
x = ¢ and if the value of the function at x = c equals the limit of the function at
x = c. If fis not continuous at ¢, we say fis discontinuous at ¢ and c is called a point
of discontinuity of f.
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Example 1 Check the continuity of the function f given by f(x) =2x + 3 at x = 1.

Solution First note that the function is defined at the given pointx = 1 and its value is 5.
Then find the limit of the function at x = 1. Clearly

lim f(x)=lim(2x+3)=2(1)+3=5
x—1 x—1

Thus lim f(x)=5= 1)

Hence, fis continuous at x = 1.

Example 2 Examine whether the function f given by f(x) = x* is continuous at x = 0.

Solution First note that the function is defined at the given pointx = 0 and its value is 0.
Then find the limit of the function at x = 0. Clearly

lim £ (x) = lim x> = 0> =0
x—0 x—0
Thus lim f(x)=0= f(0)
Hence, fis continuous at x = 0.

Example 3 Discuss the continuity of the function f given by f(x) =l xlatx =0.

Solution By definition

—-x,1f x<O0
f) = x, if x>0
Clearly the function is defined at 0 and f(0) = 0. Left hand limit of fat 0 is

i  lim () =
Jig 0 = lim (=0
Similarly, the right hand limit of fat 0 is
lim f(x)=lim x=0
x—0*" x—0*

Thus, the left hand limit, right hand limit and the value of the function coincide at
x = 0. Hence, fis continuous at x=0.

Example 4 Show that the function f given by

X +3, if x£0
f@ =7 if x=0

is not continuous at x = 0.
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Solution The function is defined at x = 0 and its value atx = 0 is 1. When x # O, the
function is given by a polynomial. Hence,

lim f(x) = lim (¥’ +3)=0°+3=3

x—0 x—0

Since the limit of fatx = 0 does not coincide with f(0), the function is not continuous

atx = 0. It may be noted that x = 0 is the only point of discontinuity for this function.
Example 5 Check the points where the constant function f(x) =k is continuous.
Solution The function is defined at all real numbers and by definition, its value at any
real number equals k. Let ¢ be any real number. Then

lim f(x) = limk=k

X—C X—C

_ lim

Since f(c) =k = f(x) for any real number c, the function f is continuous at

X—C

every real number.

Example 6 Prove that the identity function on real numbers given by f(x) = x is
continuous at every real number.

Solution The function is clearly defined at every point and f(c) = ¢ for every real
number c. Also,

lim f(x) = liinxzc

X—cC

Thus, lim f(x) = ¢ = f(c) and hence the function is continuous at every real number.
xX—cC
Having defined continuity of a function at a given point, now we make a natural

extension of this definition to discuss continuity of a function.

Definition 2 Areal function fis said to be continuous if it is continuous at every point
in the domain of f.

This definition requires a bit of elaboration. Suppose f'is a function defined on a
closed interval [a, b], then for f to be continuous, it needs to be continuous at every
point in [a, b] including the end points a and b. Continuity of fat a means

xli_gl{ f()=f(a)
and continuity of f at b means
lim f(x)=f(b)
Observe that lim f(x) and lil}} f (%) do not make sense. As a consequence

of this definition, if f is defined only at one point, it is continuous there, i.e., if the
domain of f is a singleton, f is a continuous function.
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Example 7 Is the function defined by f(x) = | x |, a continuous function?
Solution We may rewrite f as

—x,1f x<0

flo = {x, if x>0

By Example 3, we know that f'is continuous atx = 0.
Let ¢ be a real number such that ¢ < 0. Then f(c) = — c. Also

lim f(x) = lim(—x)=-c (Why?)
xX—cC X—C
Since lim f (x) = f(c), f 1s continuous at all negative real numbers.
Now, let ¢ be a real number such that ¢ > 0. Then f(c) = c. Also
lim f(x) = lim x=c (Why?)
Since lim f(x) = f(c), f is continuous at all positive real numbers. Hence, f
X—C

is continuous at all points.
Example 8 Discuss the continuity of the function f given by f(x) = x* + x* — 1.

Solution Clearly fis defined at every real number ¢ and its value at cis ¢3 + c>— 1. We
also know that

lim £ (x) = lim (X + x> =)= +c* -1
X—c X—C
Thus lim f (x) = f (¢), and hence fis continuous at every real number. This means
X—C
f1is a continuous function.
. - . : 1
Example 9 Discuss the continuity of the function f defined by f (x) = —, x #0.
X
Solution Fix any non zero real number ¢, we have

lim f(x) =liml=l
X—C X—cC x c

1
Also, since forc 20, f(c) ==, wehave lim f (x) = f (¢) and hence, fis continuous
C x—c

at every point in the domain of f. Thus fis a continuous function.
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We take this opportunity to explain the concept of infinity. This we do by analysing

the function f(x) = ; near x = 0. To carry out this analysis we follow the usual trick of

finding the value of the function at real numbers close to 0. Essentially we are trying to
find the right hand limit of fat 0. We tabulate this in the following (Table 5.1).

Table 5.1

X 1 0.3 0.2] 0.1=10"| 0.01=102| 0.001=103( 10—
f(x)| 1[3333...| 5 10 100 =102 1000=10° [ 10"

We observe that as x gets closer to 0 from the right, the value of f(x) shoots up
higher. This may be rephrased as: the value of f(x) may be made larger than any given
number by choosing a positive real number very close to 0. In symbols, we write

lim f(x)= +o0
x—0"

(to be read as: the right hand limit of f(x) at O is plus infinity). We wish to emphasise
that + oo is NOT a real number and hence the right hand limit of fat 0 does not exist (as
a real number).

Similarly, the left hand limit of / at 0 may be found. The following table is self
explanatory.

Table 5.2
X -1 -03 -02| -10" = 1072 - 103 - 10™
f) | =1 -3.333..| -5 - 10 — 102 — 103 — 10~
From the Table 5.2, we deduce that the Y

value of f(x) may be made smaller than any
given number by choosing a negative real
number very close to 0. In symbols,
we write

lim f ()= oo

(to be read as: the left hand limit of f(x) at O is
minus infinity). Again, we wish to emphasise
that — o0 is NOT a real number and hence the
left hand limit of fat 0 does not exist (as a real
number). The graph of the reciprocal function
given in Fig 5.3 is a geometric representation Y

of the above mentioned facts. Fig 5.3




CONTINUITY AND DIFFERENTIABILITY 153

Example 10 Discuss the continuity of the function f defined by

x+2,if x<1
x—=2,if x>1

0=

Solution The function fis defined at all points of the real line.
Case 1 If ¢ < 1, then f(c) = ¢ + 2. Therefore, lim f(x) =lim(x +2)=c +2
X—cC X—C

Thus, fis continuous at all real numbers less than 1.
Case 2 If ¢ > 1, then f(c) = ¢ — 2. Therefore, H

lim‘f(x):lim‘ x-2)=c-2=f(c)

Thus, fis continuous at all points x > 1.

Case 3 If ¢ =1, then the left hand limit of f at
x=11s X

lim f(x)=lim (x+2)=1+2=3
x—1° x—1

1,3)

The right hand limit of fatx =1 is T

lim f(x)=Ilim(x—-2)=1-2=-1 ;},
x—l* x—-l*
Since the left and right hand limits of fat x =1 Fig 5.4

do not coincide, f is not continuous at x = 1. Hence
x =11s the only point of discontinuity off. The graph of the function is given in Fig 5.4.

Example 11 Find all the points of discontinuity of the function f defined by

x+2,1f x<1

fx)=4 0, ifx=1
Y
x=2,if x>1 Y

1,3)

Solution As in the previous example we find that f
is continuous at all real numbers x # 1. The left
hand limit of fatx =1 is

lir{}f(x)zlirrl;(x+2)=1+2=3

The right hand limit of fat x =1 is
linll+f(x)=lir¥(x—2)=1—2=—1
X =) X

Since, the left and right hand limits of fatx =1
do not coincide, fis not continuous atx = 1. Hence hd
x =1 is the only point of discontinuity of f. The
graph of the function is given in the Fig 5.5. Fig 5.5
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Example 12 Discuss the continuity of the function defined by

x+2,if x<0
SO =1 it x>0

Solution Observe that the function is defined at all real numbers except at 0. Domain
of definition of this function is

D, uD, where D ={xe R:x<0} and
D,={xe R:x>0}

Case 1 If ¢ € D/, then lim f(x)=lim (x + 2)
X—cC X—C

=c + 2 =f(c) and hence f is continuous in D,.

Case 2 If ¢ € D,, then lim f(x)=lim (-x + 2)
X—C X—C

=—c+ 2= f(c) and hence fis continuous in D,.
Since fis continuous at all points in the domain of f,
we deduce that f is continuous. Graph of this M
function is given in the Fig 5.6. Note that to graph
this function we need to lift the pen from the plane
of the paper, but we need to do that only for those points where the function is not
defined.

Example 13 Discuss the continuity of the function f given by

x, ifx=20
fx) = { -2,4)

x2, if x <0

Fig 5.6

Solution Clearly the function is defined at
every real number. Graph of the function is

givenin Fig 5.7. By inspection, it seems prudent LD

I
X'«

to partition the domain of definition of f into

three disjoint subsets of the real line.

Let D, ={xe R:x<0},D,={0} and
D,={xe R:x>0}

Case 1 At any point in D, we havef(x) = x? and it is easy to see that it is continuous
there (see Example 2).
Case 2 At any point in D,, we have f(x) = x and it is easy to see that it is continuous
there (see Example 6).
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Case 3 Now we analyse the function at x=0. The value of the function at 0 is f(0) = 0.
The left hand limit of fat 0 is

lim f(x)=lim x> =0 =0
x—=0" x—=0
The right hand limit of fat O is
Jigp 7= lisg #=0
Thus lim f(x) = 0= f(0) and hence fis continuous at 0. This means that f is
x—0

continuous at every point in its domain and hence, fis a continuous function.

Example 14 Show that every polynomial function is continuous.

Solution Recall that a function p is a polynomial function if it is defined by
p&x)=a,+a x+..+a x"for some natural number n, a #0and a, € R. Clearly this
function is defined for every real number. For a fixed real number ¢, we have

lim p (x) = p (c)

By definition, p is continuous at c. Since c is any real number, p is continuous at
every real number and hence p is a continuous function.

Example 15 Find all the points of discontinuity of the greatest integer function defined
by f(x) = [x], where [x] denotes the greatest integer less than or equal to x.

Solution First observe that fis defined for all real numbers. Graph of the function is
given in Fig 5.8. From the graph it looks like that fis discontinuous at every integral
point. Below we explore, if this is true.

Y

N

0,3) 1 —0
0,2) 1

0,1)+ e—o
-3,0) (1,0) (2,0) (4,0)

4,0) (-2,0) (1,0) TG0 5o

—0

X'¢

o

(03 _1)
—o +(0,-2)

—o  1(0,-3

y
Yl
Fig 5.8
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Case 1 Letc be a real number which is not equal to any integer. It is evident from the
graph that for all real numbers close to ¢ the value of the function is equal to [c]; i.e.,

lim f(x)=1lim [x] =[c].Also f(c) = [c] and hence the function is continuous at all real
X—cC X—cC

numbers not equal to integers.

Case 2 Let ¢ be an integer. Then we can find a sufficiently small real number
r> 0 such that [c —r] = ¢— 1 whereas [¢c+ 7] = c.

This, in terms of limits mean that
imfx)=c-1, limfx)=c
xX—c X—cC
Since these limits cannot be equal to each other for any ¢, the function is
discontinuous at every integral point.

5.2.1 Algebra of continuous functions

In the previous class, after having understood the concept of limits, we learnt some
algebra of limits. Analogously, now we will study some algebra of continuous functions.
Since continuity of a function at a point is entirely dictated by the limit of the function at
that point, it is reasonable to expect results analogous to the case of limits.

Theorem 1 Suppose f and g be two real functions continuous at a real number c.
Then

(1) f+ g is continuous at x = c.
(2) f- gis continuous at x = c.

(3) f.gis continuous at x = c.

4) (ij is continuous at x = ¢, (provided g (c) # 0).
8

Proof We are investigating continuity of (f + g) at x = ¢. Clearly it is defined at
x = c. We have

lim(f+¢g)(x) = Um[f(x)+g(x)] (by definition of f+ g)

= lim f(x)+lim g(x) (by the theorem on limits)
xX—c X—C
=f(c) + g(o) (as fand g are continuous)
= (f+g) () (by definition of f+ g)
Hence, f+ g is continuous at x = c.

Proofs for the remaining parts are similar and left as an exercise to the reader.
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Remarks

(i) As aspecial case of (3) above, if fis a constant function, i.e., f(x) = A for some
real number A, then the function (A . g) defined by (A . g) (x) =A . g(x) is also
continuous. In particular if A = — 1, the continuity of fimplies continuity of —f.

(i) As a special case of (4) above, if f is the constant function f(x) = A, then the

is also continuous wherever g (x) # 0. In

function & defined by &(x): A
8 8 g(x

particular, the continuity of g implies continuity of g .

The above theorem can be exploited to generate many continuous functions. They
also aid in deciding if certain functions are continuous or not. The following examples
illustrate this:

Example 16 Prove that every rational function is continuous.
Solution Recall that every rational function fis given by

p(x)
J@)=—=, q(x)#0
q(x)
where p and g are polynomial functions. The domain of fis all real numbers except
points at which g is zero. Since polynomial functions are continuous (Example 14), fis

continuous by (4) of Theorem 1.
Example 17 Discuss the continuity of sine function.
Solution To see this we use the following facts
lim sin x=0
x—0
We have not proved it, but is intuitively clear from the graph of sin x near 0.

Now, observe that f(x) = sin x is defined for every real number. Let ¢ be a real
number. Put x = ¢ + h. If x = ¢ we know that 7 — 0. Therefore

lim f(x) = limsinx
xX—cC xX—cC
— limsin(c+ h)
h—0
— lim[sinccosh + cos ¢ sin A]
h—0

— lim[sinccosh]+1im [cosc sin ]
h—0 10

=sinc+0=sinc=f(c)

Thus lim f(x) = f(c) and hence fis a continuous function.
X—C
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Remarlk A similar proof may be given for the continuity of cosine function.

Example 18 Prove that the function defined by f(x) = tan x is a continuous function.

. This is defined for all real numbers such

. ) sinx
Solution The function f(x) =tan x =
Cos X

. L . . .
that cos x # 0, i.e., x # 2n +1) 5 . We have just proved that both sine and cosine
functions are continuous. Thus tan x being a quotient of two continuous functions is
continuous wherever it is defined.

An interesting fact is the behaviour of continuous functions with respect to
composition of functions. Recall that if fand g are two real functions, then

(fog ()=f(gw)
is defined whenever the range of g is a subset of domain of f. The following theorem
(stated without proof) captures the continuity of composite functions.

Theorem 2 Suppose fand g are real valued functions such that (f o g) is defined atc.
If g is continuous at ¢ and if f is continuous at g (¢), then (f o g) is continuous at c.

The following examples illustrate this theorem.
Example 19 Show that the function defined by f(x) = sin (x?) is a continuous function.

Solution Observe that the function is defined for every real number. The function
f may be thought of as a composition g o & of the two functions g and h, where
g (x) =sinx and /& (x) = x2 Since both g and & are continuous functions, by Theorem 2,
it can be deduced thatf is a continuous function.

Example 20 Show that the function f defined by
f@) =11 —x+ lxll,
where x is any real number, is a continuous function.
Solution Define g by g(x) =1 —x+ lxl and h by h(x) = x| for all real x. Then
(hog (x)=h(g(x)
=h(l-x+1xl)
=ll-x+lxll =fkx)

In Example 7, we have seen that 4 is a continuous function. Hence g being a sum
of a polynomial function and the modulus function is continuous. But then f being a
composite of two continuous functions is continuous.
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|EXERCISE 5.1|

Prove that the function f(x) = 5x — 3 is continuous atx =0, atx =—3 and at x = 5.

Examine the continuity of the function f(x) = 2x2— 1 at x = 3.

Examine the following functions for continuity.

—

(@) f&)=x-5 (b) fx)= s X#S

x2=25

() flo) = ,X#=5 (d) f&x)=1x-5lI

Prove that the function f(x) = x" is continuous at x = n, where n is a positive
integer.
Is the function f defined by
x, if x<1
f(x):{s, if x>1

continuous at x = 0? At x =17 At x=2?

Find all points of discontinuity of f, where fis defined by

6.

10.

12.

13.

I x143, if x<-3
Fo)= 2x+3, if x<2 . () =1 —2x, if —3<x<3
F=900 25 if x> 2 A B )
6x+2,1f x=3
i if x£0 2 ifx<0
f(x)=1< x 9. f)=1lxl
0, if x=0 -1, if x>0
1, if x>1 X =3, if x<2
J0= {x #Lif x<1 - f(x)z{xzﬂ, if x>2

X0 =1, if x<1
fa=1"
X,

if x>1

Is the function defined by
x+5, if x<1
f(x):{x—s, if x>1

a continuous function?
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Discuss the continuity of the function f, where fis defined by

14.

16.

17.

18.

19.

20.
21.

22.
23.

24.

3, if 0<x<1 2x, if x<0
fx)=44, ifI<x<3 15. f(x)=40, if0<x<1
5, if 3<x<10 4x, if x>1
=2, if x<-1
fx)=<2x, if —-1<x<1
2, ifx>1

Find the relationship between a and b so that the function f defined by
£ = ax+1, if x<3
P b3, if x>3

18 continuous at x = 3.

For what value of A is the function defined by

Ax* —2x), if x<0
x =
S {4x+1, if x>0

continuous at x = 0? What about continuity at x = 1?

Show that the function defined by g (x) = x — [x] is discontinuous at all integral
points. Here [x] denotes the greatest integer less than or equal to x.

Is the function defined by f(x) = x* — sin x + 5 continuous atx = 7?
Discuss the continuity of the following functions:
(a) f(x)=sin x + cos x (b) f(x) =sin x —cos x
(¢) f(x)=sin x.cos x
Discuss the continuity of the cosine, cosecant, secant and cotangent functions.
Find all points of discontinuity of f, where
sin x
f=y x

x+1, if x>0

if x<0

Determine if fdefined by

x? sinl, if x20
f(x)z X
0, if x=0

is a continuous function?
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25. Examine the continuity of f, where fis defined by
sinx—cosx, if x#0

fuj:{—L if x=0

Find the values of k so that the function fis continuous at the indicated point in Exercises
26 to 29.

kcosx . T
—y 1fx¢5 -
26. fx)= T atxzz
3, if x=Z
2
ke, if x<2
X)= —
27. J(® {3’ T, atx =2

ke+1, if x<m
28. f(x)= aAxX="7

cosx, ifx>m

Fo)= ke+1, if x<5
29 IR 555, ifass AX=S
30. Find the values of a and b such that the function defined by

5, if x<2
fx)=qax+b, if 2< x<10
21, if x>10

is a continuous function.
31. Show that the function defined by f(x) = cos (x*) is a continuous function.
32. Show that the function defined by f(x) = cos x| is a continuous function.
33. Examine that sin | x| is a continuous function.
34. Find all the points of discontinuity of fdefined by f(x) =Ix|—Ix+ 11.

5.3. Differentiability

Recall the following facts from previous class. We had defined the derivative of a real
function as follows:

Suppose fis areal function and cis a point in its domain. The derivative of fat c is
defined by

ARt O
m-—-—
h—0 h
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d
provided this limit exists. Derivative of fat ¢ is denoted by f’(c) or E(f (x)1.. The

function defined by

Jx+h)—f(x)
h

(x)=lim
F® h—0
wherever the limit exists is defined to be the derivative of f. The derivative of fis

, d : dy .
denoted by f”(x) or E(f (X)) or if y = f(x) by oY The process of finding

derivative of a function is called differentiation. We also use the phrase differentiate
f(x) with respect to x to mean find f’(x).

The following rules were established as a part of algebra of derivatives:
(1) (uxvy=u £V
(2) (uv)'=u'v+ w’ (Leibnitz or product rule)

’

3) (ﬂj _u v—zuv , wherever v # 0 (Quotient rule).
v v

The following table gives a list of derivatives of certain standard functions:

Table 5.3
f(x) X" sin x COS X tan x
f(x) nxn-1 COS X —sinx sec? x

Whenever we defined derivative, we had put a caution provided the limit exists.
Now the natural question is; what if it doesn’t? The question is quite pertinent and so is

its answer. If limM does not exist, we say thatfis not differentiable at c.
h—0 h

In other words, we say that a function fis differentiable at a pointc in its domain if both

lim M and lim w are finite and equal. A function is said

h—0" h h—0*

to be differentiable in an interval [a, b] if it is differentiable at every point of [a, b]. As
in case of continuity, at the end pointsa and b, we take the right hand limit and left hand
limit, which are nothing but left hand derivative and right hand derivative of the function
at a and b respectively. Similarly, a function is said to be differentiable in an interval
(a, b) if it is differentiable at every point of (a, b).
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Theorem 3 If a function fis differentiable at a point c, then it is also continuous at that
point.

Proof Since f is differentiable at ¢, we have

i = f©)
X—cC

X—C

=f(c)

But for x # ¢, we have

F@ - o) = LRI
X—C
Therefore im[f ()~ f ()] = lim[M.(x—c)}
x—c x—c xX—c
or lim [ £ ()] —lim[ £ ()] — Tim {M} Jim[(x - )]
X—cC X—¢C xX—c xX—c x—¢
—f(c).0=0
or )lclgcl f) =f(0)

Hence fis continuous at x = c.
Corollary 1 Every differentiable function is continuous.

We remark that the converse of the above statement is not true. Indeed we have
seen that the function defined by f(x) = | x| is a continuous function. Consider the left
hand limit

i JO+D=F©) _—h
h—0~ h h

=-1

The right hand limit

fim LOED-FO 2 _,
h—0° h h

: . - . fO+h)—-f(0)
Since the above left and right hand limits at O are not equal, /lg% T

does not exist and hence f is not differentiable at 0. Thus f is not a differentiable
function.
5.3.1 Derivatives of composite functions

To study derivative of composite functions, we start with an illustrative example. Say,
we want to find the derivative of f, where

f@) =@x+1)
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One way is to expand (2x + 1)* using binomial theorem and find the derivative as
a polynomial function as illustrated below.

d d ,
-_— X) = — 2x+1
—feo = —-[@x+1’]
d 3 2
= — (8x” +12x" +6x+1)
dx
=24x*+24x + 6
=6 (2x+ 1y
Now, observe that fx)=(hog) (x)
where g(x) =2x + 1 and h(x) = x*. Put £ = g(x) = 2x + 1. Then f(x) = h(f) = £. Thus
df dh dr
— = 6(2x+1)2=32x+1)2.2=32.2=—"-—
dx dt dx

The advantage with such observation is that it simplifies the calculation in finding
the derivative of, say, (2x + 1)'®’. We may formalise this observation in the following
theorem called the chain rule.

Theorem 4 (Chain Rule) Letf be a real valued function which is a composite of two

dt dv
functions « and v; i.e., f= v o u. Suppose ¢ =u (x) and if both E and d_ exist, we have
t

g _& dt
dx  di dx

We skip the proof of this theorem. Chain rule may be extended as follows. Suppose
fis areal valued function which is a composite of three functions u, v and w; i.e.,

f=wouwuov.Ifr=v(x)ands = u(z), then

dx dt dx ds dt dx

provided all the derivatives in the statement exist. Reader is invited to formulate chain
rule for composite of more functions.

ﬂ_ d(wou) .ﬂ_dw ds dt

Example 21 Find the derivative of the function given by f(x) = sin (x).

Solution Observe that the given function is a composite of two functions. Indeed, if
t = u(x) = x* and v(f) = sint, then

f(x)= o u) ) =v(u(x)) = v(x*) = sin x>
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Put ¢ = u(x) = x*. Observe that ﬂ =cost and % = 2x exist. Hence, by chain rule

dt
LA = ﬂ~£=cosz‘-2x
dx dt
It is normal practice to express the final result only in terms of x. Thus
d
g = cost - 2x=2xcosx’
dx
Alternatively, We can also directly proceed as follows:

dy

d
=sin (x) = — =— (sinx?)
Y dx dx

d
= Cos x? Z(xz) = 2x cos x?

Example 22 Find the derivative of tan (2x + 3).
Solution Let f(x) = tan (2x + 3), u(x) = 2x+ 3 and W¢) = tan . Then
vou (x)=vux) =vQ2x + 3) =tan 2x+ 3) = f(x)

Thus fis a composite of two functions. Put  =u(x) = 2x + 3. Then Z =sec’t and

% =2 exist. Hence, by chain rule

i=ﬂﬂ=2sec2(2x+3)
dx dt dx

Example 23 Differentiate sin (cos (x?)) with respect to x.
Solution The function f(x) = sin (cos (x%)) is a composition f(x) = (w ov o u) (x) of the

three functions u, v and w, where u(x) = x>, v(f) = cos t and w(s) = sin 5. Put

t=u(x) =x*and s = v(¢) = cos t. Observe that ﬂzcoss,§=—sintand £=2x
ds dt dx

exist for all real x. Hence by a generalisation of chain rule, we have

—=——-— =(cos ). (=sin?).(2x) =—2x sin x2 . cos (cos x)
x
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Alternatively, we can proceed as follows:

y = sin (cos x?)

Therefore ﬂ =

dx

sin (cos x?) = cos (cos x?) = (cos x?)

&~

= cos (cos x?) (- sin x?) % (x?)

= — sin x? cos (cos ) (2x)
=— 2x sin x? cos (cos x?)

|EXERCISE 5.2 |
Differentiate the functions with respect to x in Exercises 1 to 8.
1. sin (x*+5) 2. cos (sin x) 3. sin (ax + b)
sin (ax +b)
4. sec (tan (\/; ) 5. m 6. cos x* . sin® (x°)

7. 2\/cot(x2) 8. cos(+/x)
9

Prove that the function f given by

f&x)=Ilx-1,xe R
is not differentiable at x = 1.

10. Prove that the greatest integer function defined by

fx) =1[x],0<x<3
is not differentiable at x=1 and x = 2.

5.3.2 Derivatives of implicit functions
Until now we have been differentiating various functions given in the form y = f(x).
But it is not necessary that functions are always expressed in this form. For example,

consider one of the following relationships between x and y:

x—y-m=0

x+sinxy—y=0
In the first case, we can solve for y and rewrite the relationship as y = x — 7. In
the second case, it does not seem that there is an easy way to solve for y. Nevertheless,
there is no doubt about the dependence of y on x in either of the cases. When a
relationship between x and y is expressed in a way that it is easy to solve for y and
write y = f(x), we say that y is given as an explicit function of x. In the latter case it
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is implicit that y is a function of x and we say that the relationship of the second type,
above, gives function implicitly. In this subsection, we learn to differentiate implicit
functions.

Example 24 Find % ifx—y=m.

Solution One way is to solve for y and rewrite the above as

y=Xx-T
But then ﬂ =1
dx
Alternatively, directly differentiating the relationship w.r.t., x, we have
d ( ) arn
— x —_— = —
w7 i

dn
Recall that E means to differentiate the constant function taking value &
everywhere wur.t., x. Thus
d d
—(xX)-—(() =0
dx dx Y

which implies that

=&

dx

Example 25 Find %, if y+siny=-cosx.

Solution We differentiate the relationship directly with respect to x, i.e.,

dy d . d
—4+—(siny) = —(cosx
RS (siny) dx( )
which implies using chain rule
ﬂ+cosy-ﬂ =—sinx
dx dx
This gives & B L
dx 1+cosy

where y#Q2n+1)m
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5.3.3 Derivatives of inverse trigonometric functions
We remark that inverse trigonometric functions are continuous functions, but we will
not prove this. Now we use chain rule to find derivatives of these functions.

Example 26 Find the derivative of f given by f(x) = sin x assuming it exists.
Solution Let y = sin”! x. Then, x = sin y.

Differentiating both sides w.r.t. x, we get

&|&

l=cosy

Q 1 1

dx oSy B cos(sin”! x)

which implies that

T T
Observe that this is defined only for cos y # 0, i.e., sin” x # —5, E e, x#=—1,1,

ie,xe (-1, 1).
To make this result a bit more attractive, we carry out the following manipulation.
Recall that for x € (- 1, 1), sin (sin™ x) = x and hence

cos’y=1—(sin y)>=1—(sin (sin'x))> = 1 — 2
Also, since y € (—g gj cos y is positive and hence cos y = ~f] — 2

Thus, forx e (-1, 1),
dy 1 1

dx cosy f1—x2

Example 27 Find the derivative of f given by f(x) = tan™! x assuming it exists.

Solution Let y = tan™' x. Then, x = tan y.

Differentiating both sides w.r.t. x, we get

& &

I=sec’y
which implies that

dy 1 1 1 1

dx  sec? y 1+ tan® y 1 +(tan(tan_l x))2 Cl+x

2
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Finding of the derivatives of other inverse trigonometric functions is left as exercise.

The following table gives the derivatives of the remaining inverse trigonometric functions

(Table 5.4):
Table 5.4
f(x) cos x cot™x sec”lx cosecx
—1 -1 1 -1
f(x) 1—x2 1+x2 x ’xz_l x ’xz_l
Domain of £/ | (=1, 1) R (o0, 1)U (1, ) | (=00, =1)U (1, o)

Find % in the following:

10.

11.

12.

13.

14.

15.

2x + 3y =sinx

| EXERCISE 5.3/

2. 2x+ 3y=siny

3. ax + by* =cosy

xy+y'=tanx+y 5. x2+xy+y*=100 6. x* + x%y +xy? + y’= 81

2x
sinfy +cosxy=K 8. sin’x +cos2y=1 9. y=sin ( 2)

—tanl(3x_x3j L
OGS BB
1_ 2
y:cosl(1 x2j,0<x<1
+x
2
y=sinl£i sz,0<x<1
+x
y:cos_l(l2 2J,—1<x<1
+x
. > 1 1
y =sin (2x\/1—x ),——<x<—
V22
‘1( ! ]0< <«
=se¢ | — | 0<x<—=
Y 2% -1 2

1+x
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5.4 Exponential and Logarithmic Functions

Till now we have learnt some aspects of different classes of functions like polynomial

functions, rational functions and trigonometric functions. In this section, we shall
learn about a new class of (related) Y

A

functions called exponential functions and
logarithmic functions. It needs to be
emphasized that many statements made
in this section are motivational and precise
proofs of these are well beyond the scope
of this text.

The Fig 5.9 gives a sketch of

y=H®) =x,y=f)=x"y =fx) =x° (L1
andy=f(x) = x*. Observe that the curves /

get steeper as the power of x increases. X'« »X
Steeper the curve, faster is the rate of vo
growth. What this means is that for a fixed Y
increment in the value of x (> 1), the Fig 5.9

increment in the value of y = fn (x) increases as n increases for n =1, 2, 3, 4. It is

~_ 3
=,
J"Q*z

Vi

conceivable that such a statement is true for all positive values of n, where f, (x) = x".
Essentially, this means that the graph of y = f (x) leans more towards the y-axis asn
increases. For example, consider f,,(x) = x' and f,,(x) = x". If x increases from 1 to
2, f, increases from 1 to 2'° whereas f,; increases from 1 to 2. Thus, for the same
increment in x, f15 grow faster than flo.

Upshot of the above discussion is that the growth of polynomial functions is dependent
on the degree of the polynomial function — higher the degree, greater is the growth.
The next natural question is: Is there a function which grows faster than any polynomial
function. The answer is in affirmative and an example of such a function is

y =f(x) =10,

Our claim is that this function f grows faster than f, (x) =x" for any positive integer n.
For example, we can prove that 10* grows faster than f,, (x) = x'”. For large values
of x like x = 103, note that £ (x) = (10319 = 103 whereas f(10%) = 110" = 10'°,

100
Clearly f(x) is much greater than f,, (x). It is not difficult to prove that for all
x> 10, f(x) > S 100 ®). But we will not attempt to give a proof of this here. Similarly, by
choosing large values of x, one can verify that f(x) grows faster than f (x) for any
positive integer n.
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Definition 3 The exponential function with positive base b > 1 is the function

y=fx) =0
The graph of y = 10~ is given in the Fig 5.9.
It is advised that the reader plots this graph for particular values of b like 2, 3 and 4.
Following are some of the salient features of the exponential functions:

(1) Domain of the exponential function is R, the set of all real numbers.
(2) Range of the exponential function is the set of all positive real numbers.

(3) The point (0, 1) is always on the graph of the exponential function (this is a
restatement of the fact that b° = 1 for any real b > 1).

(4) Exponential function is ever increasing; i.e., as we move from left to right, the
graph rises above.

(5) For very large negative values of x, the exponential function is very close to 0. In
other words, in the second quadrant, the graph approaches x-axis (but never
meets it).

Exponential function with base 10 is called the common exponential function. In
the Appendix A.1.4 of Class XI, it was observed that the sum of the series

is a number between 2 and 3 and is denoted by e. Using this e as the base we obtain an
extremely important exponential function y = e*.

This is called natural exponential function.

It would be interesting to know if the inverse of the exponential function exists and
has nice interpretation. This search motivates the following definition.

Definition 4 Let b > 1 be a real number. Then we say logarithm of a to base b is xif
b= a.

Logarithm of a to base b is denoted by log, a. Thus log, a = x if b* = a. Let us
work with a few explicit examples to get a feel for this. We know 2° = 8. In terms of
logarithms, we may rewrite this as log, 8 = 3. Similarly, 10* = 10000 is equivalent to
saying log,, 10000 = 4. Also, 625 = 5* = 25 is equivalent to saying log, 625 = 4 or
log, 625 =2.

On a slightly more mature note, fixing a base b > 1, we may look at logarithm as
a function from positive real numbers to all real numbers. This function, called the
logarithmic function, is defined by

log,: R*— R
x— log, x=y ifbr=x



172 MATHEMATICS

As before if the base b= 10, we say it
is common logarithms and if b = e, then
we say it is natural logarithms. Often
natural logarithm is denoted by [/n. In this
chapter, log x denotes the logarithm
function to base e, i.e., In x will be written
as simply log x. The Fig 5.10 gives the plots
of logarithm function to base 2, e and 10.

Some of the important observations
about the logarithm function to any base
b>1 are listed below:

Y -

4 y = log,x
y =log,x
y =log;yx

1,0
0 >X
v
YI

Fig 5.10

(1) We cannot make a meaningful definition of logarithm of non-positive numbers

and hence the domain of log function is R*.

(2) The range of log function is the set of all real numbers.

(3) The point (1, 0) is always on the graph of the log function.
Y (y=¢)

(4) The log function is ever increasing,
i.e., as we move from left to right
the graph rises above.

(5) For x very near to zero, the value
of log x can be made lesser than
any given real number. In other
words in the fourth quadrant the
graph approaches y-axis (but never
meets it).

(6) Fig5.11 gives the plot of y = e* and
vy = In x. It is of interest to observe
that the two curves are the mirror

Fig 5.11

images of each other reflected in the line y = x.

Two properties of ‘log’ functions are proved below:

(1) There is a standard change of base rule to obtain log p in terms of log, p. Let
log p =a, log, p = and log, a = y. This means a* = p, bP=pand b'= a.

Substituting the third equation in the first one, we have
(b = b= = p

Using this in the second equation, we get
bB =p= hro
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which implies B=ayor o= E But then
Y

log p = _logbp
“ log,a

(2) Another interesting property of the log function is its effect on products. Let
log, pg = o. Then b* = pq. If log, p = B and log, g =, then &P = p and bY= q.
But then b* = pg = PPb" = bP+7
which implies o= + v, i.e.,

log, pq =log, p + log ¢
A particularly interesting and important consequence of this is when p = ¢. In
this case the above may be rewritten as

log, p> = log, p + log, p =2 log p
An easy generalisation of this (left as an exercise!) is

log, p* =n log p
for any positive integer n. In fact this is true for any real number #, but we will
not attempt to prove this. On the similar lines the reader is invited to verify

x
log, ; =log, x — log, y

Example 28 Is it true that x = ¢'¢* for all real x?

Solution First, observe that the domain of log function is set of all positive real numbers.
So the above equation is not true for non-positive real numbers. Now, let y = g~ If
y >0, we may take logarithm which gives us logy =log (¢"¢*) = log x . log ¢ =1log x. Thus
y = x. Hence x = €8 is true only for positive values of x.

One of the striking properties of the natural exponential function in differential
calculus is that it doesn’t change during the process of differentiation. This is captured
in the following theorem whose proof we skip.

Theorem 5%*
L .. d
(1) The derivative of e* wr.t., x is e*; i.e., E(e") = e

d 1
(2) The derivative of log x w.r.t., x is l; ie., —({ogx)=—.
X dx X

* Please see supplementary material on Page 286.
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Example 29 Differentiate the following w.r.t. x:
1) e™ (ii) sin (logx),x>0 (iii) cos™ (e (iv) e

COS X

Solution
(i) Let y= e~ Using chain rule, we have

)

ﬂ=e ._(_x)=_e—x

dx dx

(i) Lety =sin (log x). Using chain rule, we have
dy d cos (log x)
— — cos (logx)- —(log x) = ——————=
dx £ dx .

(i) Lety = cos™ (e¥). Using chain rule, we have

X

dy _—1.i(ex) ¢

(iv) Lety=¢e* " Using chain rule, we have
% = %" .(=sin x) = —(sinx) e“**
|EXERCISE 5.4/

Differentiate the following w.r.t. x:

X

1. .e 2. & 3. "
sin x
4. sin (tan” ™) 5. log (cos €%) 6. ¢ +e" +..+e"
COS X
7. el x>0 8. log (log x),x > 1 9, logx’ x>0

10. cos (logx +¢*), x>0

5.5. Logarithmic Differentiation

In this section, we will learn to differentiate certain special class of functions given in
the form
y=f&) = [u(x)]""

By taking logarithm (to base e) the above may be rewritten as

logy = v(x) log [u(x)]
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Using chain rule we may differentiate this to get

l -d—y= (x) L - u(x) + V(x) - log [u(x)]
y dx u(x)
which implies that
dy v(x) ,
A B P T
. yL(x) (xX)+v'(x) og[u(x)]}

The main point to be noted in this method is that f(x) and u(x) must always be
positive as otherwise their logarithms are not defined. This process of differentiation is
known as logarithms differentiation and is illustrated by the following examples:

_ 2
Example 30 Differentiate 1’()623)(—)644) w.r.t. X.
3x" +4x+5
) _ ’(x—3) (O +4)
Solution Let ¥ (G +4x15)

Taking logarithm on both sides, we have

1
logy= > [log (x~3) +log (x* + 4) ~log (3¢ + 4x + 5)]

Now, differentiating both sides w.r.t. x, we get

1 ay 1 1 N 2x  6x+4
yoax  2L(x=3) X +4 3x7+4x+5
dy y 1 2x 6x+4
or — =7 T T2
dc 2| (x=3) x +4 3x +4x+5

l,(x—3)(x2+4) I 2x  6x+4
2V 3% +4x45 | (x=3) x*+4 3x*+4x+5

Example 31 Differentiate a* w.r.t. x, where a is a positive constant.

Solution Let y = a*. Then
logy=xloga
Differentiating both sides w.r.t. x, we have

1 dy
}Ec =loga



176 MATHEMATICS

or il =yloga
dx
Th L a1
us I =a' loga
d d d
Alternatively E(ax) = E(e"bg“ )=e"'®¢ E(xlog a)

=e*2e log a =a*log a.
Example 32 Differentiate x*"*, x > 0 w.r.t. x.
Solution Lety = x**. Taking logarithm on both sides, we have

logy =sinxlog x

Theref 1 Q sinxd (logx)+1o xd (sin x)
erefore = — —
y dx P >
1dy ) 1
or ydx = (smx);+logxcosx
sin x
or % = y[ . +cosx10gx}

inx| SN X
xsmx[ +cosxlogx}
X

— sinx—1 sin x

X -sinx+x""" -cosxlog x

Example 33 Find %, ify' +x +x =d.

Solution Given that y* + ¥ + x* = &’.

Puttingu=y, v=x"and w = x*, we getu + v+ w=a’

Therefore —+—+—=0

Now, u =y*. Taking logarithm on both sides, we have

logu=xlogy
Differentiating both sides w.r.t. x, we have

. (D
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1 du d d
—— =x—(o +logy—(x
e wf g y) gy~ )
1 d
= x—'—y+logy-1
y dx
du x dy o X dy
S — = u ——+10gyJ=y {——Hogy} . (2
© dx ()’ dx y dx )
Alsov=x"
Taking logarithm on both sides, we have
logv=ylogx
Differentiating both sides w.r.t. x, we have
1 dv d dy
—-— = y—(logx)+logx—
v dx ydx(l gx)+log dx
= y-l+logx~ﬂ
S dv [ +logx }
0 — =
dx
[ +logx— } .. 3)
X
Again w=x"

Taking logarithm on both sides, we have
logw =x log x.
Differentiating both sides w.r.t. x, we have

1 dw d d
—— = x—(log x) +log x- — (x
i dx( g x) +log dx()
1
=x-—+logx-1
x
dw
ie. v (1 +1log x)

=x"(1 + logx) . (4
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From (1), (2), (3), (4), we have

« xd d
y (—d—y+logyj+xy (X+logxd—yj +x(1+logx)=0

y dx X X
- dy . .
or (x .y +x . log x) E =—x*(I+logx)—y.x!'—ylogy
dy —[y'logy+y.x"" +x"(1+logx)]
Therefore - = P E—
dx x.y " +x’logx
|EXERCISE 5.5 |
Differentiate the functions given in Exercises 1 to 11 w.r.t. x.
x-D(x=2)
1. cos x.cos 2x . cos 3x (x—3)(x—2) (x—5)
3. (log x)y>~ 4. xt - 2inx
1 * [1+l)
5. x+3)2.(x+4P. (x+5)¢ 6. [x+—| +x* *
X
7. (log x) + xe* 8. (sinx)" +sin” \fy
2
A x +1
9. ™+ (sin x)*~* 10. chosx+2—1
-

1
11. (x cos x) + (xsinx)*

Find %of the functions given in Exercises 12 to 15.

12. w+y =1 13. y'=x

14. (cos x)’ = (cos y)* 15. xy=e?

16. Find the derivative of the function given by f(x) = (1 +x) (1 +x%) (1 +x*) (1 +x°)
and hence find f7(1).

17. Differentiate (x> — 5x + 8) (* + 7x + 9) in three ways mentioned below:
(i) by using product rule
(i) by expanding the product to obtain a single polynomial.
(iii) by logarithmic differentiation.

Do they all give the same answer?
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18. Ifu, vand w are functions of x, then show that

d du d v
I w.v.w) = . VoW +u . e WHu.v I
in two ways - first by repeated application of product rule, second by logarithmic

differentiation.

5.6 Derivatives of Functions in Parametric Forms

Sometimes the relation between two variables is neither explicit nor implicit, but some
link of a third variable with each of the two variables, separately, establishes a relation
between the first two variables. In such a situation, we say that the relation between
them is expressed via a third variable. The third variable is called the parameter. More
precisely, a relation expressed between two variables x and y in the form
x =f(1),y = g (¢) is said to be parametric form with 7 as a parameter.

In order to find derivative of function in such form, we have by chain rule.

b _&H &
dt ~ dx dt
dy
or Q _dr (wheneverﬂ ;tOj
de  dx dt
dt
/ d , dx ,
Thus % = (Jg;,((g (asd_)t) =g'(t) and; =f (f)j [provided f’(¢) # 0]

dy

Example 34 Find ;, ifx=acos 0, y=asin 0.

Solution Given that
x=acosB,y=asin®

dx

Therefore E =—qasin 0, ok =a cos 0
dy
dy g9 acos®
- & =————=-—cot0
Hence & - dx —asin®

doe
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Example 35 Find %, ifx = af, y = 2at.
Solution Given that x= af, y = 2at
dx
So — =2at and ﬂt= 2a

Therefore

Example 36 Find %, ifx=a (0+sin 6), y=a (1 —cos0).

Solution We h ﬂ— 1 0 d in 6
olution We have de—a( + cos 0), 70 = a (sin 9)
ay
dy 4o asin® 0
- & - —tan-
Therefore I ﬂ 2(1+ 00s0) an2
d

D

dx
without directly involving the main variables x and y.

dy . :
It may be noted here that —- is expressed in terms of parameter only

2z 2
Example 37 Find Q’ if x3 +y3 =a3-
dx

Solution Let x = a cos® 6, y = a sin® 0. Then

2 2 2
x3 +y3 = (acos’ 0)? +(asin® 6)
2 2
a?(cos’0 + (sin’ ) = a3

2
3

2 2

Hence, x = a cos’0, y = a sin’0 is parametric equation of x3 + y3 =a?3

dx

d
Now — =—3qa cos’ Osin 6 and d_z = 3a sin’> O cos O

do
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&
dx

_ 3asin” @ cos O y

=—tan0=-3=

Therefore = T
—3acos 0sin0 X

sIsk|s

Had we proceeded in implicit way, it would have been quite tedious.

|[EXERCISE 5.6 |

If x and y are connected parametrically by the equations given in Exercises 1 to 10,
without eliminating the parameter, Find % .

1. x=2af,y=at 2. x=acos0,y=>bcos 0

4
3. x=sint,y =cos 2t 4. x=4¢,y=?

5. x=cos 0 —cos 20, y=sin 0 — sin 20

sin’ ¢ cos’ t

6. x=a®-sinB),y=a(l +cosB) 7. x= \/_ZI’ y:\/_zt
CcOos CcOS

t
8. x=a(wst+10gtan5)y:asint 9. x=asecH,y=>btan 6

10. x=a (cos®+ 0sin0B), y=a (sin® — 6 cos 0)

- -l -1 d
1. If x:\las‘“ ’,y:\/aCDS ', show that;yz—l
x

5.7 Second Order Derivative
Let y=f(x). Then
% =f'(x) . (D)

If f'(x) is differentiable, we may differentiate (1) again w.r.t. x. Then, the left hand

d
side becomes E(Ej which is called the second order derivative of y w.r.t. x and

2
is denoted by % . The second order derivative of f(x) is denoted by f”(x). It is also
X
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denoted by D*y or y” or y, ify = f(x). We remark that higher order derivatives may be
defined similarly.

2
Example 38 Find d_g), if y=x*+tanux.
dx

Solution Given that y = x* + tan x. Then

dy
— =3x* +sec x
dx
d? d
Therefore —Z = — (3x2 +seczx)
dx
=6x+2secx.secxtan x=6x + 2 sec? x tan x

2
Example 39 If y = A sin x + B cos x, then prove that %+ y=0.

Solution We have

o =Acosx—Bsinx
dx
d’y .
and W = E (A cosx — B sin x)
=—Asinx—Bcosx=-y
42
Hence W+y=0

2
Example 40 If y = 3e* + 2¢% prove that % —5%+ 6y =0.

Solution Given that y = 3e* + 2¢3* Then
& = 62" + 6e> = 6 (¢* + e¥)
dx

42
Therefore Kg =12e* + 18e¥ = 6 (2% + 3¢e¥)

d’y _dy
Hence ?—5 e T o= 6 (2e* + 3e™)

-30 (e +e>) + 6 Bex*+2e¥) =0
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2
Example 41 If y = sin™ x, show that (1 — x?) d_gz_ xﬂ =0.
dx dx
Solution We have y = sin"'x. Then
dy 1
e Ja-)
d
or Ja-xH) 2=
dx
d % dy
—|{Jd=x7).— |=0
So dx( ( ) N
d’y dy d
2 2
or (l—x )?+;;( (l—x ))20
2
2
or (1_x2).d_z_ﬂ._x:0
de” dx 41— %7
2 d’y dy
Hence I-x)——-x—=0
dx dx
Alternatively, Given that y = sin"! x, we have
1 : 5\ 2
= » .G, (l—X )y =1
1-x* 1
So (1=x*).2yy, + y1(0-2x)=0
Hence (I1-x)y,-xy =0
|EXERCISE 5.7 |
Find the second order derivatives of the functions given in Exercises 1 to 10.
I. ¥ +3x+2 2. x* 3. x.cosx
4. logx 5. x’log x 6. e*sin Sx
7. e*cos 3x 8. tan™' x 9. log (logx)
10. sin (logx) 2

: 7y
11. Ify =5 cos x — 3 sin x, prove that WJF y=0
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2
12. Ify =cos™ x, Find —zin terms of y alone.

13. If y =3 cos (log x) + 4 sin (log x), show that x* y, + xy, + y =0

d’y dy
14. If y= Ae¢™ + Be™, show that W—(m+n)a +mny =0

dzy
15. If y = 500e™ + 600e ™, show that —r 49y

| d’y _(ayY
16. Ife’(x+ 1) =1, show that —=| —
dx dx

17. If y = (tan" x)’, show that (&> + 1)’ y, + 2x (> + 1) y, =2
5.8 Mean Value Theorem

In this section, we will state two fundamental results in Calculus without proof. We
shall also learn the geometric interpretation of these theorems.

Theorem 6 (Rolle’s Theorem) Let f: [a, b] = R be continuous on [a, b] and
differentiable on (a, b), such that f(a) = f(b), where a and b are some real numbers.
Then there exists some ¢ in (a, b) such thatf’(c) = 0.

InFig 5.12 and 5.13, graphs of a few typical differentiable functions satisfying the
hypothesis of Rolle’s theorem are given.

N

>

Fig 5.12 Fig 5.13

Observe what happens to the slope of the tangent to the curve at various points
between a and b. In each of the graphs, the slope becomes zero at least at one point.
That is precisely the claim of the Rolle’s theorem as the slope of the tangent at any
point on the graph of y =f (x) is nothing but the derivative of f(x) at that point.
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Theorem 7 (Mean Value Theorem) Let f: [a, b] — R be a continuous function on
[a, b] and differentiable on (a, b). Then there exists some c in (a, b) such that

f(b)—f(a)
b—a
Observe that the Mean Value Theorem (MVT) is an extension of Rolle’s theorem.

Let us now understand a geometric interpretation of the MVT. The graph of a function
y = f(x) is given in the Fig 5.14. We have already interpreted f"(c) as the slope of the

f(b)—f(a)
b—a

is the slope of the secant drawn between (a, f(a)) and (b, f(b)). The MVT states that

there is a point c in (a, b) such that the slope of the tangent at (c, f(c)) is same as the

slope of the secant between (a, f(a)) and (b, f(b)). In other words, there is a point ¢ in

(a, b) such that the tangent at (c, f(c)) is parallel to the secant between (a, f(a)) and

(b, f(b)).

)=

tangent to the curve y = f(x) at (¢, f(c)). From the Fig 5.14 it is clear that

Y
N
(b, f (b))
D
> (e, f(0)
@'«
X'€ > X
o <
YI

Fig 5.14
Example 42 Verify Rolle’s theorem for the function y=x?+2, a=-2and b = 2.

Solution The function y = x% + 2 is continuous in [- 2, 2] and differentiable in (- 2, 2).
Also f(- 2) = f( 2) = 6 and hence the value of f(x) at — 2 and 2 coincide. Rolle’s
theorem states that there is a point ¢ € (- 2, 2), where f’(c) = 0. Since f'(x) = 2x, we
get c=0. Thus at ¢ =0, we have f(c) =0and c =0 € (-2, 2).

Example 43 Verify Mean Value Theorem for the functionf (x) = x? in the interval [2, 4].

Solution The function f(x) = x> is continuous in [2, 4] and differentiable in (2, 4) as its
derivative f(x) = 2x is defined in (2, 4).
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Now, f(2) =4 and f(4) = 16. Hence
fb)=fla) _16-4 _
b—-a 4-2

MVT states that there is a point ¢ € (2, 4) such that f(c¢) = 6. But f"(x) = 2x which
implies ¢ = 3. Thus at ¢ =3 € (2, 4), we have f"(¢) = 6.

|EXERCISE 5.8 |

1. Verify Rolle’s theorem for the function f(x) = x* + 2x — 8,x € [-4, 2].

2. Examine if Rolle’s theorem is applicable to any of the following functions. Can
you say some thing about the converse of Rolle’s theorem from these example?

(1) f(x) = [x] for x € [5, 9] (i) f(x)=[x] forxe [-2,2]
(i) f(x)=x*—1forxe [1,2]

3. Iff: [- 5, 5] > R is a differentiable function and if f’(x) does not vanish
anywhere, then prove that f(— 5) # f(5).

4. Verify Mean Value Theorem, if f(x) = x> — 4x — 3 in the interval [a, D], where
a=1and b =4.

5. Verify Mean Value Theorem, if f(x) = x> — 5x* — 3xin the interval [a, b], where
a=1and b=3. Find all ¢ € (1, 3) for which f'(¢) = 0.

6. Examine the applicability of Mean Value Theorem for all three functions given in
the above exercise 2.

Miscellaneous Examples

Example 44 Differentiate w.r.t. x, the following function:

(i) VBrTd 4o (i) e +3cos™'x (i) log, (log x)

V2x2 +4

Solution

() Lety= VI3x+2 +

1 1 -1
——= Bx+2)2+(2x* +4) 2
V2x% + 4

Note that this function is defined at all real numbers x > —% . Therefore

dy

1 R ( j R A
—(3x+2)? - —(@Bx+2)+ 2x°4+4) 2 -—(2x +4
ry 2( ) dx( ) ( ) dx( )

1
2
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L 2
%(3x+2) 2 -(3)—[12] (2x* +4) 2 - 4x

2x

3
23x +2

3
(2x2+4)2

This is defined for all real numbers x >—§ .

2
sec” x

(i) Let y=¢" " +3cos ' x

This is defined at every real number in [-1, 1]. Therefore

dy sec? x d 2 [ 1 ]
— _ e -—(sec”x)+3|—
NI

dx dx
e -[2secxi (secx)] +3 (— ! ]
dx 1-x*

> 1
_ 2secx(secxtanx) ™ " +3 (— 2}
1-x

2 1
_ 2sec’xtanx & F +3 (— j

\h—x2

Observe that the derivative of the given function is valid only in [, ] _{()} as

the derivative of cos™' x exists only in (- 1, 1) and the function itself is not

defined at 0.

log (log x)
log7

The function is defined for all real numbers x > 1. Therefore

(i) Lety=log, (logx)= (by change of base formula).

dy 1 d
—_ = —(log (log x
& Tog? dx( g (log x))
1 1
_ L (og )
log7 logx dx
1

xlog7logx
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Example 45 Differentiate the following w.r.t. x.

. x+1
() cos”' (sinx) (i) tanl( S j (iii) sin{ 2 j

1+cosx 1+4*

Solution

(1) Letf (x)=cos~!(sinx). Observe that this function is defined for all real numbers.
We may rewrite this function as

f(x) = cos™! (sin x)

ls ]

I
= ——X
2
Thus f'(x) =-1.
(i) Let f(x) = tan-! ( St X ) Observe that this function is defined for all real
1+cosx

numbers, where cos x # — 1; i.e., at all odd multiplies of . We may rewrite this

function as
_ sinx
tan™! ( J
1+ cosx

(3ol

20082£
2

— tan”' tan(fﬂ .
2 2

Observe that we could cancel €0s (
1

J(x)

—

— tan~

jin both numerator and denominator as it

N | =

is not equal to zero. Thus f'(x) = 3

x +1

(iii) Letf(x)=sin"" (1 4*] .To find the domain of this function we need to find all
+

x+1
x such that —1<

—< 1. Since the quantity in the middle is always positive,

1+ 4
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x+1
we need to find all x such that

—< 1, i.e., all x such that 2541 <1 +45 We

1+

1
may rewrite this as 2 < ; + 2% which is true for all x. Hence the function

is defined at every real number. By putting 2* = tan 0, this function may be

rewritten as
r 2X+ 1 :|
| 1+4*

o 2v2 }
sin _2
[1+(2%)

—_

sin”

J(x)

sin

| 2tan® }

L 1+tan’
=sin~! [sin 20]
=20=2tan"' (29
2.;2.1(2)6)

1+(2%)" ax

Thus £

-(2%)log 2
1+4" s
2*"og2

1+4"
Example 46 Find f(x) if f(x) = (sin x)so+ for all 0 < x <.

Solution The function y = (sin x)*"* is defined for all positive real numbers. Taking
logarithms, we have

log y=log (sin x)*"*= sin x log (sinx)

ldy 4 .
Then - = Z (sin xlog (sin x))

y dx

i (sinx)

=cos xlog (sin x) + sin x . —
sinx dx

= cos x log (sin x) + cos x

= (1 + log (sin x)) cos x
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d
Thus Zy = y((1 + log (sin x)) cos x) = (1 + log (sin x)) ( sin x)*"* cos x

Example 47 For a positive constant a find %, where

t+-1 la
y=a ', and x=|t+-
t

Solution Observe that both y and x are defined for all real ¢ # 0. Clearly
1

& d(“l) atﬁi[t+lj~loga

= da’ ar '\t

t+-1 1
a'll1-=|loga
t

]l
alt+- —lt+-
t dt t

Similarly

=&

I
Q
| ——
~
+
~ | —
[
Q
L
VR
i
|
H‘\’I’_
~—

H-
a !'loga

= a-1
fr+])
t
Example 48 Differentiate sin® x w.r.t. ecs~,

Solution Let u (x) = sin®> x and v (x) = e***. We want to find d_”: du / dx . Clearly

dv dv/dx

du y
— =2sinxcosxand — = e~ (—sin x) = — (sin x) ecos~
dx dx
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™ du 2sinx cosx 2008 X
us —_— = — =
dv  —sinx e™* e

COS X

Miscellaneous Exercise on Chapter 5

Differentiate w.r.t. x the function in Exercises 1 to 11.

1. Bx*?-9x +)5)° 2. sindx + cos®x
3. (5x)3cos2x 4. sin'(x Jx),0<x< 1
cos™ =
5. 2. _2<x<2
N2x +7
p | Wl+sinx ++1-sin x O<x<£
’ Jl+siny —fl-sinx |’ 2

7. (log x)eex x> 1
8. cos (acos x + b sin x), for some constant a and b.

. e eoen T 3n
9, (sin x — cos x) Ginx=eos 0 2 oy o2

10. x*+ x*+ a* + a¢, for some fixeda >0 and x > 0

1. x 7 +(x=3)", forx>3

12. Find & ify=12(1—cos . x =10 (t—sin 1), —F<r< X
dx 2 2

13. Find %,ify:sin‘ x+sin! \J]—x2,0<x<1

14. If x,/1+y+y\/1+x:0,for,—1<x< 1, prove that
dy 1

dx (1+ x)2
15. If (x — a)* + (y —b)* = ¢*, for some ¢ > 0, prove that

_ -
1+(ﬂ)
dx) |
4’y
dx*

is a constant independent of a and b.

] k)
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16.

17.

18.

19.

20.

21.

22.

23.

MATHEMATICS

2
. +
If cos y =x cos (a+ y), with cos a # £ 1, prove that Q:M .
sina
2

Ifx=a (cost+tsint)and y= a(sint -t cos ?), find W

If f(x) = | x P, show that f”(x) exists for all real x and find it.

Using mathematical induction prove that i( x") =" for all positive
integers n.

Using the fact that sin (A + B) =sin A cos B + cos A sin B and the differentiation,
obtain the sum formula for cosines.

Does there exist a function which is continuous everywhere but not differentiable
at exactly two points? Justify your answer.

f) g(x) hx) f(x) gx) Hx
If y= I m n |, prove that —=| 1 m n
dx
a b c a b c

2
If y= pacos™x, -1 <x<1, show that (1_x2)d_§_xﬂ_a2y:().

Summary

¢ A real valued function is continuous at a point in its domain if the limit of the

function at that point equals the value of the function at that point. A function
is continuous if it is continuous on the whole of its domain.

Sum, difference, product and quotient of continuous functions are continuous.
i.e., if fand g are continuous functions, then

(f£g) &) =f(x) £ g(x) is continuous.
(f. g (x) =f(x) . g(x) is continuous.

[ﬁj(x) = % (wherever g (x) # 0) is continuous.

@ Every differentiable function is continuous, but the converse is not true.
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¢ Chain rule is rule to differentiate composites of functions. If f=v o u, t =u (x)

and if both £ and ﬂ exist then

dt
L
dx dt dx
¢ Following are some of the standard derivatives (in appropriate domains):

Z(sin™'x)= ! Z(cos™ x)=— L
dx 1-x* 1-x*
4 (gt x) = —— 4 (et x) = ——
dx 1+ x dx 1+x
i(sec_lx)z ! i(cosec_lx)z !
dx xl-x° dx x VI —x?
d( S d 1
—le')=e —(logx)=-
o dx( gx) -

¢ Logarithmic differentiation is a powerful technique to differentiate functions
of the form f(x) = [u (x)]* ®. Here both f(x) and u (x) need to be positive for
this technique to make sense.

@ Rolle’s Theorem: Iff: [a, b] — R is continuous on [a, b] and differentiable
on (a, b) such that f(a) = f(b), then there exists some ¢ in (a, b) such that
f)=0.

® Mean Value Theorem: If f : [a, b] — R is continuous on [a, b] and
differentiable on (a, b). Then there exists some ¢ in (a, b) such that

f(b)—f(a)
b

fe)=

—_— % —
L



Chapter

APPLICATION OF
DERIVATIVES

¥ With the Calculus as a key, Mathematics can be successfully applied
to the explanation of the course of Nature.” — WHITEHEAD <y

6.1 Introduction

In Chapter 5, we have learnt how to find derivative of composite functions, inverse
trigonometric functions, implicit functions, exponential functions and logarithmic functions.
In this chapter, we will study applications of the derivative in various disciplines, e.g., in
engineering, science, social science, and many other fields. For instance, we will learn
how the derivative can be used (i) to determine rate of change of quantities, (ii) to find
the equations of tangent and normal to a curve at a point, (iii) to find turning points on
the graph of a function which in turn will help us to locate points at which largest or
smallest value (locally) of a function occurs. We will also use derivative to find intervals
on which a function is increasing or decreasing. Finally, we use the derivative to find
approximate value of certain quantities.

6.2 Rate of Change of Quantities

ds
Recall that by the derivative Z , we mean the rate of change of distance s with

respect to the time . In a similar fashion, whenever one quantity y varies with another

quantity x, satisfying some rule y = f(x), then % (or f'(x)) represents the rate of

change of y with respect to x and E} (or f’(x,)) represents the rate of change

x=xp
of y with respect to x at x =, .
Further, if two variables x and y are varying with respect to another variable ¢, i.e.,
if x= f(t)and y = g(t), then by Chain Rule
dy dy [dx

i £ o
& dif a0 U oar
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Thus, the rate of change of y with respect to x can be calculated using the rate of
change of y and that of x both with respect to ¢.

Let us consider some examples.

Example 1 Find the rate of change of the area of a circle per second with respect to
its radius r when » = 5 cm.

Solution The area A of a circle with radius r is given by A = t/°. Therefore, the rate

dA
of change of the area A with respect to its radius r is given by E = ; (nr)=2mr.

dA
When r = 5 cm, d_ =107 . Thus, the area of the circle is changing at the rate of
r

10 cm?/s.

Example 2 The volume of a cube is increasing at a rate of 9 cubic centimetres per
second. How fast is the surface area increasing when the length of an edge is 10
centimetres ?

Solution Let x be the length of a side, V be the volume and S be the surface area of
the cube. Then, V = x* and S = 6x2, where x is a function of time .

N — =9cm?/s (Gi
ow 7 cm’/s (Given)
Theref 0= ¥ _4 )= 4 (). % By Chain Rule)
erefore =—=— =— c— ain Rule
dr dr 0 dx dr
= 3x2'@
dt
dx 3 |
or d[ = xz ( )
as d d dx
N — = —(6x")=—(6x) - — By Chain Rul
ow 5 dt( ) dx( ) = (By Chain Rule)
3 36
- 2x| = |=— ;
= (xz ] B (Using (1))

das
Hence, when x=10cm, = =3.6cm’/s
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Example 3 A stone is dropped into a quiet lake and waves move in circles at a speed
of 4cm per second. At the instant, when the radius of the circular wave is 10 cm, how
fast is the enclosed area increasing?

Solution The area A of a circle with radius r is given by A = /2. Therefore, the rate
of change of area A with respect to time ¢ is

dA d 5 d 5 dr dr .
— = —r)=—@mr°) — =2nr — (By Chain Rule)
dt dt dr dt dt
dr
Itis given that — =4cm/s

dt

dA
Therefore, when r = 10 cm, 7 =21 (10) (4) = 80m
t

Thus, the enclosed area is increasing at the rate of 80 cm?s, when r = 10 cm.

< Note ; is positive if y increases as x increases and is negative if y decreases

as x increases.

Example 4 The length x of a rectangle is decreasing at the rate of 3 cm/minute and
the width y is increasing at the rate of 2cm/minute. When x =10cm and y = 6¢m, find
the rates of change of (a) the perimeter and (b) the area of the rectangle.

Solution Since the length x is decreasing and the width y is increasing with respect to
time, we have

L3 = -3 cm/min and b = 2cm/min
dt dt
(a) The perimeter P of a rectangle is given by
P=2(x+y)
dp dx d .
Therefore —_= 2[—x + _y] =2 (-3+2)=-2 cm/min
dt dedt
(b) The area A of the rectangle is given by
A=x.y
dA  dx dy
Therefore — =—y+

— y x o —

dt dt dt
=-3(6)+10(2) (asx=10cm and y = 6 cm)
=2 cm?%min
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Example 5 The total cost C(x) in Rupees, associated with the production of x units of
an item is given by
C(x) =0.005 x* — 0.02 x? + 30x + 5000
Find the marginal cost when 3 units are produced, where by marginal cost we
mean the instantaneous rate of change of total cost at any level of output.

Solution Since marginal cost is the rate of change of total cost with respect to the
output, we have

dc
Marginal cost (MC) = d_ =0.005(3x)— 0.02(2x) +30
X

When x =3, MC = 0.015(3%)—0.04(3) + 30
=0.135-0.12 + 30 =30.015
Hence, the required marginal cost is Rs 30.02 (nearly).

Example 6 The total revenue in Rupees received from the sale of x units of a product
is given by R(x) = 3x” + 36x + 5. Find the marginal revenue, when x = 5, where by
marginal revenue we mean the rate of change of total revenue with respect to the
number of items sold at an instant.

Solution Since marginal revenue is the rate of change of total revenue with respect to
the number of units sold, we have

dR
Marginal Revenue (MR) = o =6x+36
X
When x=5 MR=6(5 +36=0606

Hence, the required marginal revenue is Rs 66.

| EXERCISE 6.1|

1. Find the rate of change of the area of a circle with respect to its radius r when
(a) r=3cm (b) r=4cm

2. The volume of a cube is increasing at the rate of 8§ cm’/s. How fast is the
surface area increasing when the length of an edge is 12 cm?

3. The radius of a circle is increasing uniformly