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Foreword

The National Curriculum Framework, 2005, recommendsthat children’slife at school
must be linked to their life outside the school. This principle marksadeparture from the
legacy of bookish learning which continues to shape our system and causes a gap
between the school, home and community. The syllabi and textbooks devel oped on the
basis of NCF signify an attempt to implement this basic idea. They also attempt to
discourage rote learning and the maintenance of sharp boundaries between different
subject areas. We hope these measures will take us significantly further in the
direction of achild-centred system of education outlined in the National Policy on
Education (1986).

The success of thiseffort depends on the stepsthat school principalsand teachers
will taketo encourage childrento reflect on their own learning and to pursueimaginative
activitiesand questions. We must recognisethat, given space, timeand freedom, children
generate new knowledge by engaging with theinformation passed on to them by adults.
Treating the prescribed textbook as the sole basis of examination is one of the key
reasons why other resources and sites of learning are ignored. Inculcating creativity
andinitiativeispossibleif we perceive and treat children as participantsin learning, not
asreceivers of afixed body of knowledge.

Theseaimsimply considerable changein school routinesand mode of functioning.
Flexibility in the daily time-table is as necessary asrigour in implementing the annual
calendar so that the required number of teaching days are actually devoted to teaching.
The methods used for teaching and evaluation will also determine how effective this
textbook proves for making children’ slife at school a happy experience, rather than a
source of stress or boredom. Syllabus designers have tried to address the problem of
curricular burden by restructuring and reorienting knowledge at different stages with
greater consideration for child psychology and the time available for teaching. The
textbook attempts to enhance this endeavour by giving higher priority and space to
opportunitiesfor contempl ation and wondering, discussionin small groups, and activities
requiring hands-on experience.
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NCERT appreciatesthe hard work done by the textbook devel opment committee
responsible for this book. We wish to thank the Chairperson of the advisory group in
Science and M athematics, Professor J.V. Narlikar and the Chief Advisor for thisbook,
Professor PK. Jain for guiding thework of thiscommittee. Several teachers contributed
to the devel opment of thistextbook; we are grateful to their principalsfor making this
possible. We areindebted to the institutions and organi sations which have generously
permitted usto draw upon their resources, material and personnel. As an organisation
committed to systemic reform and continuousimprovement in the quality of itsproducts,
NCERT wel comes comments and suggestionswhich will enable usto undertake further
revision and refinement.
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Preface

The Nationa Council of Educational Research and Training (NCERT) had constituted
21 Focus Groups on Teaching of various subjects related to School Education,
to review the National Curriculum Framework for School Education - 2000
(NCFSE - 2000) in face of new emerging challenges and transformations occurringin
the fields of content and pedagogy under the contexts of National and International
spectrum of school education. These Focus Groups made general and specific comments
intheir respective areas. Consequently, based on these reports of Focus Groups, National
Curriculum Framework (NCF)-2005 was devel oped.

NCERT designed the new syllabi and constituted Textbook Development
Teamsfor Classes X1 and X1I to prepare textbooksin Mathematics under the new
guidelines and new syllabi. Thetextbook for Class X1 isalready in use, which was
brought in 2005.

The first draft of the present book (Class XI1) was prepared by the team
consisting of NCERT faculty, experts and practicing teachers. The draft was refined
by the development team in different meetings. Thisdraft of the book was exposed
to agroup of practicing teachers teaching Mathematics at higher secondary stage
in different parts of the country, in areview workshop organised by the NCERT at
Delhi. Theteachers made useful comments and suggestionswhich were incorporated
inthedraft textbook. The draft textbook wasfinalised by an editorial board constituted
out of the development team. Finally, the Advisory Group in Science and Mathematics
and the Monitoring Committee constituted by the HRD Ministry, Government of India
have approved the draft of the textbook.

In the fitness of things, let us cite some of the essential features dominating the
textbook. These characteristics havereflectionsin amost all the chapters. Theexisting
textbook contains thirteen main chapters and two appendices. Each chapter contains
thefollowings:

= |ntroduction: Highlighting the importance of the topic; connection with earlier
studied topics; brief mention about the new concepts to be discussed in the
chapter.

= Organisation of chapter into sections comprising one or more concepts/
subconcepts.

= Motivating and introducing the concepts/subconcepts. Illustrations have been
provided wherever possible.
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= Proofg/problem solving involving deductive or inductive reasoning, multiplicity
of approaches wherever possible have been inducted.

= Geometric viewing/ visualisation of concepts have been emphasized whenever
needed.

= Applications of mathematical concepts have aso been integrated with allied
subjectslike Science and Social Sciences.

= Adequate and variety of examples/exercises have been given in each section.

= [For refocusing and strengthening the understanding and skill of problem solving
and applicabilities, miscellaneous types of examples/exercises have been
provided involving two or more subconcepts at atime at the end of the chapter.
The scope of challenging problems to talented minority have been reflected
conducive to the recommendation as reflected in NCF-2005.

= For more motivational purpose, brief historical background of topics have been
provided at the end of the chapter and at the beginning of each chapter, relevant
quotation and photograph of eminent mathematician who have contributed
significantly in the development of the topic undertaken, are also provided.

= Lastly, for direct recapitulation of main concepts, formulas and results, brief
summary of the chapter has also been provided.

| am thankful to Professor Krishan Kumar, Director, NCERT who constituted the
team and invited meto join this national endeavour for theimprovement of M athematics
education. He has provided us with an enlightened perspective and avery conducive
environment. This made the task of preparing the book much more enjoyable and
rewarding. | expressmy gratitudeto Professor J.V. Narlikar, Chairperson of theAdvisory
Group in Science and Mathematics, for his specific suggestions and advice towards
the improvement of the book from time to time. |, also, thank Professor
G. Ravindra, Joint Director, NCERT for his help from timeto time.

| express my sincere thanks to Professor Hukum Singh, Chief Coordinator and
Head, DESM, Dr. V. P. Singh, Coordinator and Professor, S. K. Singh Gautam who
have been helping for the success of thisproject academically aswell asadministratively.
Also, | would like to place on records my appreciation and thanks to all the members
of the team and the teachers who have been associated with this noble causein one or
the other form.

Pawan K. JaIN
Chief Advisor
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CONSTITUTION OF INDIA

Preamble

WE, THE PEOPLE OF INDIA, having
solemnly resolved to constitute India into
a SOVEREIGN SOCIALIST SECULAR
DEMOCRATIC REPUBLIC and to secure to
all its citizens:

JUSTICE, social, economic and
political;

LIBERTY of thought, expression, belief,
faith and worship;

EQUALITY of status and of opportunity
and to promote among them all;

FRATERNITY assuring the dignity of
the individual and the unity and integrity of
the Nation;

IN OUR CONSTITUENT ASSEMBLY
this twenty-sixth day of November, 1949,
do HEREBY ADOPT, ENACT AND GIVE
TO OURSELVES THIS CONSTITUTION.
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Chapter 7

(INTEGRALS )

* Just as a mountaineer climbs a mountain — because it is there, so
a good mathematics student studies new material because
it is there. — JAMES B. BRISTOL <+

7.1 Introduction

Differential Calculus is centred on the concept of the
derivative. The original motivation for the derivative was
the problem of defining tangent lines to the graphs of
functions and calculating the slope of such lines. Integral
Calculus is motivated by the problem of defining and
calculating the area of the region bounded by the graph of
the functions.

If a function f is differentiable in an interval I, i.e., its
derivative f “exists at each point of I, then a natural question
arises that given f”at each point of I, can we determine
the function? The functions that could possibly have given
function as a derivative are called anti derivatives (or
primitive) of the function. Further, the formula that gives

G .W. Leibnitz
(1646 -1716)

all these anti derivatives is called the indefinite integral of the function and such
process of finding anti derivatives is called integration. Such type of problems arise in
many practical situations. For instance, if we know the instantaneous velocity of an
object at any instant, then there arises a natural question, i.e., can we determine the
position of the object at any instant? There are several such practical and theoretical
situations where the process of integration is involved. The development of integral
calculus arises out of the efforts of solving the problems of the following types:

(a) the problem of finding a function whenever its derivative is given,
(b) the problem of finding the area bounded by the graph of a function under certain

conditions.

These two problems lead to the two forms of the integrals, e.g., indefinite and
definite integrals, which together constitute the Integral Calculus.
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There is a connection, known as the Fundamental Theorem of Calculus, between
indefinite integral and definite integral which makes the definite integral as a practical
tool for science and engineering. The definite integral is also used to solve many interesting
problems from various disciplines like economics, finance and probability.

In this Chapter, we shall confine ourselves to the study of indefinite and definite
integrals and their elementary properties including some techniques of integration.

7.2 Integration as an Inverse Process of Differentiation

Integration is the inverse process of differentiation. Instead of differentiating a function,
we are given the derivative of a function and asked to find its primitive, i.e., the original
function. Such a process is called integration or anti differentiation.

Let us consider the following examples:

d
We know that —(sin x) =cos x . (D)
d x°
Z () =52 .2
dx( 3) X )
d
and —(e")=¢" .. (3
dx( ) (3)

We observe that in (1), the function cos x is the derived function of sin x. We say
3
that sin xis an anti derivative (or an integral) of cos x. Similarly, in (2) and (3), x? and

e* are the anti derivatives (or integrals) of x* and e, respectively. Again, we note that
for any real number C, treated as constant function, its derivative is zero and hence, we
can write (1), (2) and (3) as follows :

d 3
—(

i(sinx+C)=cosx, %+C)=x2and%(ex+C)=ex

Thus, anti derivatives (or integrals) of the above cited functions are not unique.
Actually, there exist infinitely many anti derivatives of each of these functions which
can be obtained by choosing C arbitrarily from the set of real numbers. For this reason
C is customarily referred to as arbitrary constant. In fact, C is the parameter by
varying which one gets different anti derivatives (or integrals) of the given function.

. . . d .
More generally, if there is a function F such that ; Fx)=f (x), vxe I (interval),

then for any arbitrary real number C, (also called constant of integration)

%[F(x)+C] =f(x),x el
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Thus, {F + C, C € R} denotes a family of anti derivatives of f.

Remark Functions with same derivatives differ by a constant. To show this, let g and &
be two functions having the same derivatives on an interval I.

Consider the function f= g — h defined by f(x) = g(x) - h(x), vx e 1

d)
Then d_]:c =f'=g¢g -NWgiving ff(x)=g’ (W) -h(x) vxel
or f7(x) =0, wx € I by hypothesis,

i.e., the rate of change of f with respect to x is zero on I and hence f is constant.

In view of the above remark, it is justified to infer that the family {F + C, C € R}
provides all possible anti derivatives of f.

We introduce a new symbol, namely, _[f (x) dx which will represent the entire

class of anti derivatives read as the indefinite integral of f with respect to x.

Symbolically, we write I fx)dx=Fx) +C.

d
d—);=f(x),wewritey: jf(x)dx,

For the sake of convenience, we mention below the following symbols/terms/phrases
with their meanings as given in the Table (7.1).

Notation Given that

Table 7.1

Symbols/Terms/Phrases Meaning

J. f&)dx Integral of f with respect to x

S in If (x) dx Integrand

xin J S &) dx Variable of integration

Integrate Find the integral

An integral of f A function F such that
F(x)=f(x)

Integration The process of finding the integral

Constant of Integration Any real number C, considered as
constant function
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We already know the formulae for the derivatives of many important functions.
From these formulae, we can write down immediately the corresponding formulae
(referred to as standard formulae) for the integrals of these functions, as listed below
which will be used to find integrals of other functions.

Derivatives Integrals (Anti derivatives)
d x"+1 " xn+1
N — =x". n = —
() dx(n+1J ; _fx dx — +C ., n#-1
Particularly, we note that
d
—(x)=1; dx=x+C
< ()= ]
d , . .
(i) Z(SIHX)ZOOSX; J.cos xdx=sinx +C
... d . .
(iii) E(—cosx)zsmx; jsmxdx:—cos x+C
. d 2 2
(iv) E(tanx)zsec X ; J.sec xdx=tan x+C
d 2 2
) Z(—COUC)=COSGC X ; Icosec xdx=-cotx+C
. d
(vi) E(secx):secxtanx ; jsecxtanxdx:secx+C
.. d
(vii) E(—cosec x) = cosec xcot x ; J.cosec xcotx dx =— cosec x+ C
d .1 1 dx —
(vii) ;(sm x)= = . I = = sin x+C
1-x 1-x
d _ 1 dx -1
.. —(—cos ' x|= =-cos x+C
(IX) dx( ) 1_x2 5 I’l_x2
d 1 1 dx -1
—(tan" x|= . =tan” x+C
) dx( ) 1+x*° '[1+x2
d -1 1 -1
iy —|—cot x|= . =—cot” x+C
() dx( ) 1+ x* J‘1+x2



INTEGRALS 291

. i(sec_lx)z; ILzsec_1x+C
(X1 g x\’xz—l ’ x\’xz—l
d —1 1 dx -1
... —|—coseC  X|=—m———. ———==—-cosec x+C
(xiti) dx( ) xyfxi-1" J.x\/xz—l
d X X X X
(xiv) E(e )=¢e . Ie dx=¢e¢ +C
d 1 1
—(loglxl)=—: —dx=logl x|+C
(xv) —(loglxl)=—; Ix glx
d( a a’
H — =a' . Tdx= +C
(xvi) dx(log a] v I ¢ log a

In practice, we normally do not mention the interval over which the various
functions are defined. However, in any specific problem one has to keep it in mind.

7.2.1 Geometrical interpretation of indefinite integral

Let f (x) = 2x. Then j f(x)dx=x"+C. For different values of C, we get different
integrals. But these integrals are very similar geometrically.

Thus, y =x2+ C, where C is arbitrary constant, represents a family of integrals. By
assigning different values to C, we get different members of the family. These together
constitute the indefinite integral. In this case, each integral represents a parabola with
its axis along y-axis.

Clearly, for C = 0, we obtain y = »%, a parabola with its vertex on the origin. The
curve y =x? + 1 for C = 1 is obtained by shifting the parabola y = x?> one unit along
y-axis in positive direction. For C =— 1, y =x?— 1 is obtained by shifting the parabola
y =x? one unit along y-axis in the negative direction. Thus, for each positive value of C,
each parabola of the family has its vertex on the positive side of the y-axis and for
negative values of C, each has its vertex along the negative side of the y-axis. Some of
these have been shown in the Fig 7.1.

Let us consider the intersection of all these parabolas by a line x = a. In the Fig 7.1,
we have taken a > 0. The same is true when a < 0. If the line x = a intersects the
parabolas y =x*, y=x*+1,y=x*+2,y=x*-1,y=x-2atP,P,P, P, P, etc,

respectively, then E at these points equals 2a. This indicates that the tangents to the

curves at these points are parallel. Thus, .[ZX drx =x* + C=F, (x) (say), implies that
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Y
N y=x+3
y=x+2
Pl
/ ' y=x2+1
P,/
/ [ y=x
.P
/ y_xz_l
\ .P" g y=x2—2
/:' 2 2
& \\ A‘ . y_x _3 5 Y
X\ Q/ / ,X
xX=a
Vv
Yl
Fig 7.1

the tangents to all the curves y = F C(x), C e R, at the points of intersection of the
curves by the line x = a, (a € R), are parallel.

Further, the following equation (statement) J.f(x) dx=F@x)+C=y(say),

represents a family of curves. The different values of C will correspond to different
members of this family and these members can be obtained by shifting any one of the
curves parallel to itself. This is the geometrical interpretation of indefinite integral.

7.2.2 Some properties of indefinite integral
In this sub section, we shall derive some properties of indefinite integrals.
(D The process of differentiation and integration are inverses of each other in the
sense of the following results :

L[ dx = fo

and J.f ‘(x)dx =f(x) + C, where C is any arbitrary constant.
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Proof Let F be any anti derivative of f, i.e.,

<L) =700

Then [f)yde =F) +C
Therefore % J. f)dx = %(F(x) +C)
= LFW)=f W

Similarly, we note that
d
¢ - —_— X
o) = — f)

and hence _[f ‘@) dx =f(x) + C

where C is arbitrary constant called constant of integration.

Two indefinite integrals with the same derivative lead to the same family of
curves and so they are equivalent.
Proof Let fand g be two functions such that

Ll jwac= 2 Jg w

or %Uf(x)dx—jg ) dx} -0

Hence [f(x)dx—[g @ dx= C,whereC is any real number ~(Why?)
or Jred = [g@dr+cC

So the families of curves {[ f(x)dx+G.C, R}

and {I gx)dx+C,,C,e R} are identical.

Hence, in this sense, I f&)dxand I g(x) dx are equivalent.
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@ Note|The equivalence of the families {jf(x)dx+Q,CleR} and

{.[ g)dx+C,,C e R} is customarily expressed by writing _[ fx)de= Ig (x) dx,

without mentioning the parameter.

am [ +g@]dr=[f@) dr+ [ go) dx
Proof By Property (I), we have

HJrrw+gwrac] = 1w + g ()

On the otherhand, we find that

%Uf(x)dﬂjg(x)dx} - %ff(x)d“%fg(x)dx

=f@) + g . ()
Thus, in view of Property (II), it follows by (1) and (2) that

Jrw+gw)de= [ fe)de+ [ dx.

(IV) For any real number £, jk f)dx=k J- f(x)dx

Proof By the Property (I), %J.k fx)dc=k f(x).

Also %[k If(x)dx} - k%jf(x)dx:kf(x)

Therefore, using the Property (II), we have J.k f)de=k _[f (x)dx.

(V) Properties (III) and (IV) can be generalised to a finite number of functions
fl,fz, ...,fn and the real numbers, kl, k2, ey kn giving

[Tk fi )+ ko fy @+t K, f, )] d
= k[ fi0) dx+ k[ o () de+...+k, [ £,00 dx.

To find an anti derivative of a given function, we search intuitively for a function

whose derivative is the given function. The search for the requisite function for finding
an anti derivative is known as integration by the method of inspection. We illustrate it

through some examples.
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Example 1 Write an anti derivative for each of the following functions using the
method of inspection:

1
(1) cos 2x (i) 32 + 43 @@ =—,x#0
X

Solution

(i) We look for a function whose derivative is cos 2x. Recall that

; sin 2x = 2 cos 2x

2 1d . o i(lsinbc]
or cos x—2dx(sm )_dx >

1 .
Therefore, an anti derivative of cos 2x is 5 sin 2x |

(i) We look for a function whose derivative is 3x? + 4x*. Note that

d
—(x3 +x4) =3 + 4x°.
dx
Therefore, an anti derivative of 3x* + 4¢° is x° + x*.
(1)) We know that

i(log x)=l,x >0 andi[log(—x)] =L(— 1):l,x<0
dx X dx —-X X

d 1
Combining above, we get — (log|x{)=—, x#0
dx X

1 . o 1
Therefore, I— dx =log|x| is one of the anti derivatives of —-
x x

Example 2 Find the following integrals:
3

34 2 3 o
(i) Ixxz de (i) [+ 1) dx i) [(2+2e ~2)dx

Solution
(i) We have

lezldxzjxdx—Jx_zdx (by Property V)
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xl +1 X 2+1
N +C, |- +C, |, C,. C, are constants of integration

1+1 -2+1
2 -1 >
_—4C-—-C, -2 +l4Cc -C
2 1 1 2 ) ¥ 1 2
x* 1
= 7+—+C,whereC:Cl—C2 is another constant of integration.
X

From now onwards, we shall write only one constant of integration in the
final answer.

(i) We have

J.(x-i +1)dx= J'x-§ dx+ Idx

2

S+l s
-2 +x+C:§x3+x+C

2

—+1

3

(iii) We have I(x_z +2¢6 - %) dx= .[x% dx+ jZex dx— J‘%dx

§+l

2

); +2¢" —log|a|+C
241

2

7 2

gx 242e" —log|y+C

Example 3 Find the following integrals:

(1) I(sin x+ cos x) dx (ij)J.cosec x (cosec x + cot x) dx

1-sin x
(i) cos? x

Solution
(i) We have

I(sin X+ cosx)dx=jsinxdx+fcosxdx

= —cosx+sinx+C
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(i) We have
'[(oosec x (cosec x + cot x) dx zjcoseczx dx+ Icosec xcot x dx

= —cotx —cosec x +C

(i) We have
1-sin x 1 sin x
dx = dx — dx
j cos’x J‘coszx '[coszx

Jseczx dx— Jtan xsec xdx

=tan x —secx +C

Example 4 Find the anti derivative F of fdefined by f(x) = 4x® — 6, where F (0) = 3

Solution One anti derivative of f (x) is x* — 6x since
d
—(x4 —6x) =44 -6
dx

Therefore, the anti derivative F is given by
F(x) = x*— 6x + C, where C is constant.
Given that F(0) =3, which gives,

3=0-6x0+C or C=3
Hence, the required anti derivative is the unique function F defined by
F(x) = x* - 6x + 3.

Remarks

(i) We see that if F is an anti derivative of f, then so is F + C, where C is any
constant. Thus, if we know one anti derivative F of a function f, we can write
down an infinite number of anti derivatives of f by adding any constant to F
expressed by F(x) + C, C € R. In applications, it is often necessary to satisfy an
additional condition which then determines a specific value of C giving unique
anti derivative of the given function.

(i) Sometimes, F is not expressible in terms of elementary functions viz., polynomial,
logarithmic, exponential, trigonometric functions and their inverses etc. We are

therefore blocked for finding _f f &) dx . For example, it is not possible to find

— X2 . . . . . . . . — 2
Ie dx by inspection since we can not find a function whose derivative is e *
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(iii) When the variable of integration is denoted by a variable other than x, the integral
formulae are modified accordingly. For instance
4+1

4 Y l 5
= +C==y"+C
Iy & 4+1 5y

7.2.3 Comparison between differentiation and integration

1. Both are operations on functions.
2. Both satisfy the property of linearity, i.e.,

d d d
@ E[kl h+ky f, @)=k S @tk = fo ()

) [[k £ ) +ky f @] de=k [ f () detk, [ £ (x) dx
Here k, and k, are constants.

3. We have already seen that all functions are not differentiable. Similarly, all functions
are not integrable. We will learn more about nondifferentiable functions and
nonintegrable functions in higher classes.

4. The derivative of a function, when it exists, is a unique function. The integral of
a function is not so. However, they are unique upto an additive constant, i.e., any
two integrals of a function differ by a constant.

5. When a polynomial function P is differentiated, the result is a polynomial whose
degree is 1 less than the degree of P. When a polynomial function P is integrated,
the result is a polynomial whose degree is 1 more than that of P.

6. We can speak of the derivative at a point. We never speak of the integral at a
point, we speak of the integral of a function over an interval on which the integral
is defined as will be seen in Section 7.7.

7. The derivative of a function has a geometrical meaning, namely, the slope of the
tangent to the corresponding curve at a point. Similarly, the indefinite integral of
a function represents geometrically, a family of curves placed parallel to each
other having parallel tangents at the points of intersection of the curves of the
family with the lines orthogonal (perpendicular) to the axis representing the variable
of integration.

8. The derivative is used for finding some physical quantities like the velocity of a
moving particle, when the distance traversed at any time ¢ is known. Similarly,
the integral is used in calculating the distance traversed when the velocity at time
tis known.

9. Differentiation is a process involving limits. So is integration, as will be seen in
Section 7.7.
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10. The process of differentiation and integration are inverses of each other as

1.
4.

discussed in Section 7.2.2 (i).

| EXERCISE 7.1
Find an anti derivative (or integral) of the following functions by the method of inspection.
sin 2x 2. cos 3x 3. e™
(ax + by 5. sin2x —4 ¥

Find the following integrals in Exercises 6 to 20:

6.

12.

15.

17.

19.

21.

22.

[aer+nyax 7. sz(l—%)dx 8. [(@ +bx+c)dx

2 3 2
55 —4
fax?+enar 0. j(\/;—ij dax 1. [

NP P

X +3x+4 Yo +x-1

—a 13 [ 2R g14. (A=) Vxdx

I ‘/; J 1 X Jl( )
J\/;(Sx2+2x+3)dx 16. J(Zx—3cosx+ex)dx
j(2x2—3sinx+5\/;)dx 18. Isecx(secx+tanx)dx

2

sec” x 2 —3sin x

[—F—a& 20 [
cosec” x cos? x

Choose the correct answer in Exercises 21 and 22.

o .1
The anti derivative of ( X+ _J_j equals
X

1 1 2

A Lotadc B) 25 +ix24c
3 3 2
7 3 d 3 2 1
©) §x2+2x2+C (D) Ex2+—x2 +C

If %f(x) =4x — 3 such that f(2) = 0. Then f(x) is
x

4

. 1 129 ;1 129

(A) X +x—3—T (B) X +F+—

+ 1 129 s 1 129

©) x'+Z+——= (D) X+ -—=
X 8 X
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7.3 Methods of Integration

In previous section, we discussed integrals of those functions which were readily
obtainable from derivatives of some functions. It was based on inspection, i.e., on the
search of a function F whose derivative is f which led us to the integral of f. However,
this method, which depends on inspection, is not very suitable for many functions.
Hence, we need to develop additional techniques or methods for finding the integrals
by reducing them into standard forms. Prominent among them are methods based on:

1. Integration by Substitution
2. Integration using Partial Fractions
3. Integration by Parts
7.3.1 Integration by substitution
In this section, we consider the method of integration by substitution.

The given integral Jf (x) dx can be transformed into another form by changing
the independent variable x to ¢ by substituting x = g (7).

Consider = [f)dx

Put x = g(7) so that % = ¢(1).

We write dx = g'(1) dt

Thus 1= [f de=[f(s@)g'®) di

This change of variable formula is one of the important tools available to us in the
name of integration by substitution. It is often important to guess what will be the useful
substitution. Usually, we make a substitution for a function whose derivative also occurs
in the integrand as illustrated in the following examples.

Example 5 Integrate the following functions w.r.t. x:

(1) sinmx (i) 2xsin(x*+1)
~ tan® yfx sec? Jx ) sin (tan~" x)
(i) T v —
X +Xx
Solution

(i) We know that derivative of mx is m. Thus, we make the substitution
mx = t so that mdx = dt.

. 1¢. 1
Therefore, ISln mxdxz—Jlsmtdt = - lcost+C =——cosmx+ C
m m m
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(i) Derivative of x> + 1 is 2x. Thus, we use the substitution x> + 1 = ¢ so that
2x dx = dt.

Therefore, j2x sin (x2+1)dx:jsintdt = —cost+C =—cos (xX*+ 1)+ C
1

1 - 1
(iii) Derivative of [y is Ex 2 =

24/x
1
Jx =150 that —= dx = dt giving dx= 2t dt.

wx

J~tan4 XSGCZ\/; d J-2ttan4t sec’t dt
x = | — —

. Thus, we use the substitution

Thus, =2 Itan“t sec’r dt
Jx 1
Again, we make another substitution tan #= u so that sec’ t dt = du
5
Therefore, 2 J‘tan4t sec’t dr=2 J.If du = 2 M? +C
2 s :
= gtan t+ C (since u = tant)
2 s .
= gtan x+C (smcet:ﬁ)
4 2
tan* Jx sec? x 2
Hence, _[ dx = Ztan’ Jx+C
Jx 5

Alternatively, make the substitution tan~/x = ¢

(iv) Derivative of tan™'x= = Thus, we use the substitution

1+ x

| dx
tan™ x = ¢ so that T = dt.
+ X

sin (tan™'x .
Therefore , J‘%dﬁcz J.sm tdt = —cost+C=-cos(tan'x) + C
X

Now, we discuss some important integrals involving trigonometric functions and
their standard integrals using substitution technique. These will be used later without
reference.

(i) Itan x dx =log|sec x| +C
We have

sin x

Itanxdxzj dx

COoS X
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Put cos x =t so that sin x dx = — dt

Then Jtanxdx:—jﬁz—log|t|+C:—log|cosx|+C
t
or jtan x dx=1log |sec x|+ C

(ii) _[cotx dx =log|sinx |+C

COS X

We have Icot dezfsinx dx

Put sin x =7 so that cos x dx = dt

di
Then '[cot xdx=.|.7t = log|t|+C = log |sin x|+C

(iii) Isecxdx=log|secx+tan x|+C

We have

secx (sec x +tan x)

jsec xdxzj dx

sec x +tan x
Put sec x + tan x = so that sec x (tan x + sec x) dx = dt

Therefore, Jsec xdx=j%:log|t|+C =log|sec x+ tan x|+ C

(iv) Icosec x dx =log|cosec x — cot x|+ C

We have
cosec x(cosec x + cot x)

Icosecx dx:.[ (cosec x +cotx)

Put cosec x + cotx =t so that — cosec x (cosec x + cot x) dx = dt
dt

So Icosecxdx=—f—=—log|t|:—loglcosecx +cotx|+C
t

COS@C2 X— OOt2 )Cl
+C

—log
cosec x — cot x |

log |cosec x —cot x|+ C

Example 6 Find the following integrals:

0) Isin3 xcos” xdx (i1) Y

sin (x+ a) (i) I 1+ tan x
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Solution
(i) We have

. 2 -2 2 .
J.sm3 xcos“xdx= Ism xcos”x(sin x) dx

= I(l - coszx) cos’x (sin x) dx

Put ¢ = cos x so that df = — sin x dx

Therefore, jsinzx coszx(sin x)dx = —J‘(l—l‘z)l‘2 dt
35
[ —iyd=-| =-Z |+
3 5

= —lcos3x+lcossx+C
3 5

(i) Put x + a = t. Then dx = dt. Therefore
J- sin x J-sm (t—a)

sin (x+a) sin ¢

Isintcosa—costsina

sin ¢

cosaJ.dt—sinaIcottdt

(cosa)t— (sina) [log|sin t| +C, ]

(cosa) (x+a) - (sin @) [log|sin (x + a)|+ C, |

= x cosa+ acos a—(sin a) 10g|sin (x+ a)|—C1 sin a

sin x
Hence, j— = x cos a—sin a log Isin (x + a)l + C,
sin (x+ a) & ( )
where, C = — Cl sin a + a cos a, is another arbitrary constant.
J‘ J‘ cos x dx
1l )
(i) 1+tanx cos x+sin x

1 I(cosx+sin X+coSs x —sin x) dx

Ccos x+ sin x
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Now, consider 1= j

Therefore

MATHEMATICS

1 1
3Ja+3]

x C 1
—+—=L+
2 2 2

Putting it in (1), we get

dx x C; 1
I—:—+—+—1
l+tanx 2 2 2

CcOoS X —sin x

dx

COS X +sin x

3!

COS x —sin x

(o)

x 1 . C,
= +—log|cos x +sinx| + =L+
2 2 2

1 .
§+E log |cos x +sin x| +C,(C =

COS x —sin x

—dx
cos x+ sin x

dx

COS X+ sin x
Put cos x + sin x = ¢ so that (cos x — sin x) dx = dt

., C,
g |cos x +sin x| +7

Integrate the functions in Exercises 1 to 37:

12.

15.

2x
1+ %2

1

o -1)3x°

9 —4y°

2.

. sin x sin (cos x) 5.

. "ax+b 7.
c (Ax+2) x> +x+1 10,

13.

16.

L&
2
Sy
2
|EXERCISE 7.2 |
(log x)2
X

sin (ax +b) cos (ax +b)

x.,/x+2 8.

1
x—\/; 11.
2
X
(2+3x")° 14.
e2x+3 17.

%)

3.

I:J%:log|t|+ C, = log|cos x+sin x| +C,

- (D

x+xlogx




18.

21.

24.

27.

30.

33.

36.

tan™" x

1+ x?

tan? (2x — 3)

2c0s x — 3sin x
6cos x+ 4sin x

.,/sin 2x cos 2x

sin x

1+cos x

1

1—tan x

(x+1) (x+1log x)2

X

19.

22.

28.

31.

34.

37.

e —1

e +1

sec? (7 — 4x)

1

cos’x (1-tan x)2

COoS X
\'1 +sin x

sinx
(1+cos x)2

-,'tan X

sin xcos x

x’sin (tan_ 1x4)

148

Choose the correct answer in Exercises 38 and 39.

38.

39.

| 10x” +10" log , dx

0 +10°

(A) 10 —x"° + C
(©) (10° = ¥°)! + C

-[ sin? xcos? x

(A) tanx+cotx+ C
(C) tanxcotx +C

equals

equals

20.

23.

26.

29.

32.

3s.
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cot x log sin x

1+cot x

(I+log x)2

(B) 10" +x° + C
(D) log (10" + x'%) + C

(B) tanx —cotx+ C
(D) tan x — cot 2x + C

7.3.2 Integration using trigonometric identities
When the integrand involves some trigonometric functions, we use some known identities
to find the integral as illustrated through the following example.

Example 7 Find (i) [cos®xdx (i) [sin 2xcos 3xdx (i) [sinxdx
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Solution
(i) Recall the identity cos 2x = 2 cos® x — 1, which gives
1+cos 2x
2

cos’x =
2 1 1 1

Therefore, Jcos xdx = —I(1+cos 2x) dx = —Idx+—jcos 2x dx
2 2 2

+—sin2x +C

0o | =

(i) Recall the identity sin x cos y = —[sin (x + y) + sin (x — y)] (Why?)

Then .[sin 2xcos3xdx = %U sin Sx dx OIsin xde

- l{—%cos S5x+ oosx}+C

1
= ——cos5x+lcosx+C
10 2

@iii) From the identity sin 3x = 3 sin x — 4 sin’ x, we find that

3sin x—sin 3x
4

sin’x =

Therefore, Isin3x dx = EJ‘ sin x dx — l Isin 3xdx
4 4

= —gcos x+Lcos3x+C
4 12

Alternatively, f sin’ x dx =Isin2x sin x dx = I(l —cos”x) sin x dx

Put cos x =t so that — sin x dx = dt

Therefore, Isin3xdx = —I(l—tz)dt = _jdt+jt2 dt:—t+t3—3+C

1
= —cosx+§cos3x+C

Remark 1t can be shown using trigonometric identities that both answers are equivalent.
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EXERCISE 7.3
Find the integrals of the functions in Exercises 1 to 22:
1. sin?(2x+)5) 2. sin 3x cos 4x 3. cos 2x cos 4x cos 6x
4. sin*(2x + 1) 5. sin®x cos® x 6. sin x sin 2x sin 3x
1-cos x CoS X
7. sin4x sin 8x §. —— 9, ——
1+cos x 1+cos x
.2
10. sintx 11. cos* 2x 12, =%
1+cos x
— COS X — sin
13, Qs2x-coscw g, QWSXOSME s iant 2x sec ¢
COS X —COS & 1+ sin 2x
3 3 .2
sin” x +cos” x
16. tan*x 17. ————— 18. Mﬁsmx
sin” xcos” x cos” x
1 coSs 2x .
19, ——— 20, ———— 21. sin~!(cosx)
S x Cos™x (cosx+sinx)
22. !
cos (x —a) cos (x —b)
Choose the correct answer in Exercises 23 and 24.
-2 2
23. jw dx is equal to
sin? x cos® x
(A) tan x+ cotx + C (B) tan x + cosec x + C
(C) —tanx + cot x + C (D) tan x + sec x+ C
cos”(e*x)
(A) —cot (ex') + C (B) tan (xe*) + C
(C) tan (e¥) + C (D) cot (e) + C

7.4 Integrals of Some Particular Functions

In this section, we mention below some important formulae of integrals and apply them
for integrating many other related standard integrals:

(l)f d =i10g

x xX—-a
x*-a> 2

+C

X +a
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a+x
+C

=—1

a’-x*

) J- dx 1

a—Xx

dx 1 1 X
,[ 7, 7 - tan
x“+a” a a

_log|x +Vx’ —a2| +C

3) —+C

) jJ—

dx .1 X
I =sin"!=+C
a’-x? a

dx
6) |—— =10g|x +x? +a?
J.\/xz +a’

We now prove the above results:

)

+C

1 1
(1) We have xz—az_(x—a)(x+a)

_ 1| Gta)-x—a) :L[L_ 1 }
" 22| (x—a)(x+a) 2a | x—a x+a
e Fevl

= é[logl x—a)l-logl(x+a)]+C

dx
Therefore, J‘ﬁ
X —a

11
= —Io
a g

X—a

+C

X+a

(2) In view of (1) above, we have

1 :i (a+x)+(a—x) 1 1 1
a—x*> 2a| (a+x)(a—x) :Zl:a—x+a+x}
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Therefore, J zdx > i“ dx +I dx }

a —x 2a |Ya—x a+x

1
—[-logla—xl+logla+xI]+ C
2a[ 2 2 ]

1
—log arx +C
2a

a—x

The technique used in (1) will be explained in Section 7.5.

(3) Putx =atan 6. Then dx = a sec® 0 db.

Therefore, _[ _ J‘ asec” 0do

X +a’ a’ tan’0 + a*

1 X
- -jdez—e +C=—tan"' =+ C
a a a a
(4) Letx =a sec6. Then dx = a sec6 tan6 d6.
a secH tand do

dx
Therefore, I ﬁ - I \/cT

Isece dd =log|sech + tanf| +C,

= log

’x

P

= log| x+x* —a*|-log |a|+C1
+x* -

+C, whereC =C, —loglal

1[+C,

= log| x
(5) Let x=asin6. Then dx = a cos6 de.

Therefore J. J‘ a cos do
| V \/ —a?* sin’0

- Id9=9+C=sin’1£+C
a
(6) Let x = a tanO. Then dx = a sec?6 d6.
a sec’0 do

dx
Therefore, J\/ﬁ = ,[ m

Isece dd = log|(seco +tand)| +C,
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2
X X
_10g -+ —2+1
- a a

+C,

_ log |x+ 2 +d —loglal+C,

= log |x+x* +a*|+C  where C = C, — log lal

Applying these standard formulae, we now obtain some more formulae which
are useful from applications point of view and can be applied directly to evaluate

other integrals.
To find the integral |——o— i
o find the integral |=5—— "~ we write
. { , b c} ( b jz c b
ax*+bx+c=alx +—x+—|=a||x+t— | +|———
a a 2a a 4a
b .. € b’ 2 .
Now, put x+ Z:tso that dx = dt and writing ;_F:ik . We find the

1 dt c b
integral reduced to the form ; J‘m depending upon the sign of (a 4a2 ]
and hence can be evaluated.

dx
To find the integral of the type I—, proceeding as in (7), we
2
ax” +bx+c

obtain the integral using the standard formulae.
pX+gq
ax> +bx+c

constants, we are to find real numbers A, B such that

To find the integral of the type I dx | where p. g, a, b, c are

px+q:Adi(ax2 +bx+c)+B=A (2ax+b) +B
X

To determine A and B, we equate from both sides the coefficients of x and the
constant terms. A and B are thus obtained and hence the integral is reduced to
one of the known forms.
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. . (px +q) dx
(10) For the evaluation of the integral of the type jf , we proceed
ax” +bx+c

as in (9) and transform the integral into known standard forms.

Let us illustrate the above methods by some examples.

Example 8 Find the following integrals:

) dx . dx
R s

Solution
) dx dx 1 —
(i) We have sz Y —I e = glog 2 +C [by 7.4 (1)]
dx dx
G | =f
V2x -2 \/1—(x—1)2
Put x — 1 =¢. Then dx = dt.
dx dt o
Therefore, _[— = J =sin" ()+C [by 7.4 (5)]
2x—x2 1-¢°
=sin' @x—1)+C

Example 9 Find the following integrals :

. j dx . j dx IL
o E LT S LT T S

Solution
(i) Wehave x2—6x + 13 =x2-6x+32-32+13=(x-3)2+4

dx 1
S y = dx
? jx2—6x+13 I()5_3)2+22
Let x — 3 =t. Then dx = dt
dx dt | O
= =—tan —+C
Therefore, sz —xt13 It2 TIPS > [by 7.4 (3)]

I x
—tan  —+C
2 2
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(i) The given integral is of the form 7.4 (7). We write the denominator of the integrand,

} (completing the square)

13x 10
32 +13x-10 = 3(x2+——g)
2 2
3 (Ej (ﬂj
= 6 6
dx
Thus [——m— ==
st +13x-10 j( 13)2_(gj2
6 6
13
Put X+E:t' Then dx = dt.
dx 1 dt
Therefore, J 5 = —J. >
3x* +13x-10 3 tz_(nj

x+5

[by 7.4 (1)]

1 1
+C,+ —log-—
TR

+C _ where C C+11 !
= _0_
, Where 1 17 g3
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(1)) We have IL = _f—dx
V5x* - 2x ’S(XQ _2_Xj
5

1
= \/§j J( N (completing the square)
X

1
Put X—gzt . Then dx = dt.
Theref J‘ dx 1 J‘ dt
erefore, —_— = | T T—
V5x2—2x \/g 2 (_1)2
5

1 , (1Y
- —1 - = C
5 log 1+, (sj + [by 7.4 (4)]

Llog x—l+ xz—ﬁ
5 5 \} 5

Example 10 Find the following integrals:
] J- x+2 dx B J‘ x+3
@ 2x 4+ 6x+5 @) V5—dx+x°

Solution

+C

(i) Using the formula 7.4 (9), we express
x+2=A j (2x7 +6x+5)+B = A(4x+6)+B

Equating the coefficients of x and the constant terms from both sides, we get
1 1
4A=1and 6A+B =2 or AzzandB=5.
2 4 1
J x+ J' x+6 ot L J‘ dx

Therefore, 2% 4 6x45 2% +6x+5 2x% +6x+5

-1, += sa
A 1 9 2 y
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In I, put 2x* + 6x + 5 = ¢, so that (4x + 6) dx = dt

Therefore, I = j£= log | t| +C,
t

= log 12x* +6x+51+C,

2x2 4+ 6x+5

dx 1 dx
and L= I 5

x2+3x+§
2

1 dx
=5I

=

Put x+%= t, so thatdx = dt, we get

dt 1
J. = ] tan~'2¢+C,

= tan"'2 (x+ %j+ C, = tan"'(2x+3)+ C,

Using (2) and (3) in (1), we get

=22 gv=Liog|ox® +6x+5]+ -t (2043)+C
23 +6x+5 4 2
C
where, C= g+—2
4 2

This integral is of the form given in 7.4 (10). Let us express

d
Xx+3= AE(5—4X—X2)+B=A(—4—2x)+B

(2

[by 7.4 (3)]

. ()

Equating the coefficients of x and the constant terms from both sides, we get

1
—-2A=1land-4A+B=3,1e,A= —5 and B =1
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x+3 1 (-4-2x)dx dx
Therefore, |—F—=dx = - +
I\/5—4x—x2 2'[\/5—4x—x2 N5 —dx—
1
:—5 Il+12 (1)
InI, put5—4x — x> =1, so that (- 4 — 2x) dx = dt.
(—4-2x)dx . dt
Therefore, [= |———==|— = 2\/;+C1
1 ‘[\/5—4x—x2 '[\/;
= 2\/5-4x-x*+C . (2)
] dx _ dx
Now consider L= I\/5—4x—x2 _IJ9—(X+2)2
Put x + 2 = ¢, so that dx = dt.
heref [t =i 24 C by 74.(5)
Therefore, L= \/ﬁ:sm PR [by 7.4 (5)]
32—t 3
- sin_lx;2+C2 . 3)

Substituting (2) and (3) in (1), we obtain

J‘%=—\IS—4X—X2 +sin”! x;2+C, where C=C, —%
5-4x—x

|[EXERCISE 74|
Integrate the functions in Exercises 1 to 23.
3x° 5 1 . 1
x0+1 CV1+4x? . (2—x)2+1
1 - 3x ¢ 2
V9 - 25x° 24 BT
x—1 x> sec’x

8§, ———— 9, —F—
X -1 © +a Vtan’x + 4
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1 1 1
10. 4+2x+2 1. 9x* +6x+5 12. J7—6x—x2
13 ! 14 ; 15 1
’ (x-1)(x-2) ’ \/8+3x—x2 ©J(x=a)(x-b)
4dx+1 x+2 5x=2
16. 3 17. =, 18. 3 2r i3
6x+7 x+2 x+2
19, —m——— 20. —— 21, —/—
(x—5)(x—4) 4x — x> \/x2+2x+3
x+3 5X+3

22, —S5V——— 23. .
x> -2x-5 \/x2+4x+10

Choose the correct answer in Exercises 24 and 25.

——— equals
4. Ix2+2x+2 d
(A) xtan? (x+1)+C (B) tan?' (x+ 1)+ C
C) (x+Dtam'x+C (D) tan'x + C
25, IL equals
VOox — 4x°
(A) lsin_l(wj+c (B) lsin_l(8)€_9J+C
9 8 2 9
1 . (9x-8 lSinl(9x_8J+C
(©) 5811’1 (T)-'-C (D) 2 9

7.5 Integration by Partial Fractions
Recall that a rational function is defined as the ratio of two polynomials in the form

% , where P (x) and Q(x) are polynomials in x and Q(x) # 0. If the degree of P(x)
X

is less than the degree of Q(x), then the rational function is called proper, otherwise, it
is called improper. The improper rational functions can be reduced to the proper rational
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functions by long division process. Thus, if is improper, then P =T(x) + h® ,
Q(x) Q) Q)
, - P& . : ,
where T(x) is a polynomial in x and ) is a proper rational function. As we know

how to integrate polynomials, the integration of any rational function is reduced to the
integration of a proper rational function. The rational functions which we shall consider
here for integration purposes will be those whose denominators can be factorised into
P(x) P(x)
dx , where ——
Q) Q)
is proper rational function. It is always possible to write the integrand as a sum of
simpler rational functions by a method called partial fraction decomposition. After this,
the integration can be carried out easily using the already known methods. The following
Table 7.2 indicates the types of simpler partial fractions that are to be associated with
various kind of rational functions.

linear and quadratic factors. Assume that we want to evaluate I

Table 7.2
S.No. | Form of the rational function Form of the partial fraction
Lo Pty G
(x—a) (x—b) x—a x-b
A B
2 px+q + >
" G-a)? x—a (x-a)
3 pxt+gx+r A 4 B N C
’ (x—a)(x-b)(x—c) x—a x—-b x-c
4 X gx+r A  _ B 4 C
" -a)’ (x-D) x—a (x—a)” x-b
s px’ +qx+r A _Bx+C
(x —a) (x* +bx +c) Xx—a x*+bx+c
where x* + bx + ¢ cannot be factorised further

In the above table, A, B and C are real numbers to be determined suitably.
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dx
Example 11 Find J.m

Solution The integrand is a proper rational function. Therefore, by using the form of
partial fraction [Table 7.2 (i)], we write

1 A, B
C+1)(x+2)  x+1 x+2

(D)

where, real numbers A and B are to be determined suitably. This gives
I=Ax+2)+Bx+1).
Equating the coefficients of x and the constant term, we get
A+B=0
and 2A+B=1
Solving these equations, we get A=1 and B =— 1.

Thus, the integrand is given by

1 L]
@+D(x+2)  x+l x+2

dx dx ¢ dx

Therefore, I(x+1)(x+2) B Ix+1_Ix+2

= 10g|x+1|—10g|x+2|+C

x+1

= log +C

x+2

Remark The equation (1) above is an identity, i.e. a statement true for all (permissible)
values of x. Some authors use the symbol ‘=’ to indicate that the statement is an
identity and use the symbol ‘=’ to indicate that the statement is an equation, i.e., to
indicate that the statement is true only for certain values of x.
. X +1
Example 12 Find IZ— dx
X —5x+6

2

x“+1
Solution Here the integrand —————
x°=5x+6

x>+ 1 by x> — 5x + 6 and find that

is not proper rational function, so we divide
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2 5x-5 S5x-5
x* —5x+6 X —=5x+6 (x=2) (x-3)
5x -5 A B
Let = +
x-2)(x-3) x-2 x-3
So that 5x-5=Ax-3)+B(x-2)

Equating the coefficients of x and constant terms on both sides, we get A+ B =5
and 3A + 2B = 5. Solving these equations, we get A=—-5 and B =10

X4l 5 10

Thus, 3 = +
x°=5x+6 x=2 x-=-3
X +1
Therefore, IZ—
x°—=5x+6
=x—-5loglx—21+10loglx—- 31+ C.
2
Example 13 Find J.—
(x+ 1) x+3)

Solution The integrand is of the type as given in Table 7.2 (4). We write

3x-2 A B C
2 = + 2-i-
x+D"(x+3)  x+1 (x+1)° x+3
So that 3x-2=Ax+1)(x+3)+Bx+3)+Cx+1)

=AX?+4x+3)+Bx+3)+C(x2+2x+1)

Comparing coefficient of x?, x and constant term on both sides, we get
A+C=0,4A +B +2C =3 and 3A + 3B + C =- 2. Solving these equations, we get

A= u B :_5 and C= — 11 . Thus the integrand is given by
4 2 4

3x=2 i 5 11
C+D3(x+3) ~ 4(x+1) 2(x+1)2 4(x+3)
Theref: J- 3x—2 11 __J~ dx
eretore, aC+D2(x+3) 49 x+1 (x+1) 443
= E10g|x+1|+ —Elog|x+3|+C
4 2x+1) 4
111 x+1 . 5 \C
= — 10
4 Blxe3| 2G4
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. X
Example 14 Find jmdx

2

X
Solution Consider —————— — and put x2 = y.
& +1) (x*+4) P Y

2

Then 5 a 5 = Y
@+ +4) +DhH(y+4)
) y A B
Write = +
G+D)(y+4) y+1 y+4
So that y=Ap0+4H+BOuy+1)

Comparing coefficients of y and constant terms on both sides, we getA + B =1
and 4A + B =0, which give

1 4
= — and B=-
A 3 3

x? 1 4
Thus, 5 > = - > + 5
@ +Dh(x"+4) 3(x+1) 3(x"+4)
x*dx 1 dxe 4 dx
Therefore, J‘ﬁ = ——I 5 +—I 5
E+Dh(x"+4) 3x+1 37x7°+4

I, 4 1 |x
——tan” x+—X—tan  —+C
3 3 2 2

= —ltan_1x+%tan_1£+c
3 3 2

In the above example, the substitution was made only for the partial fraction part
and not for the integration part. Now, we consider an example, where the integration
involves a combination of the substitution method and the partial fraction method.

(3sin¢—2)cosd 4
5—cos’¢—4sin ¢
Solution Let y = sin¢

Then dy = cos¢ do

Example 15 Find I o
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3sind —2) cos 3y—-2)d
Therefore, I( §—2) cosd ¢=I o 2) -
5—cos’—4sind 5-(1-y)-4y
J- 3y-2
- 4y+4
_ [ 16y
(y-2)
N i 3y -2 A LB [by Table 7.2 (2)]
oW, we write = y lable /.
(y-2f  y=2 (-2
Therefore, 3y—-2=A(-2)+B

Comparing the coefficients of y and constant term, we get A=3 and B -2A=-2,
which gives A=3 and B = 4.

Therefore, the required integral is given by

j[ o A =3jdy+4

dy
! y-2 J@—zf

1
31 “2|+4| - —— |+ C
eyl ( y—2J+

4

= 31 ing—2
og | sin ¢ |+2—sin¢

+C

= 3log (2 —sin ¢)+ + C (since, 2 — sin ¢ is always positive)

2—sin ¢

x>+ x+1dx

Example 16 Find Im

Solution The integrand is a proper rational function. Decompose the rational function
into partial fraction [Table 2.2(5)]. Write

2+ x+1 A Bx+C
G+ (x+2) x+2 (x* +1)

Therefore, Crx+1=A @+ 1)+ Bx+C)(x+2)
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Equating the coefficients of x% x and of constant term of both sides, we get
A+ B=1,2B+C=1and A + 2C = 1. Solving these equations, we get

3 2 1
A=— B=—andC=-
5 5 5

Thus, the integrand is given by

1
Stxtl 3 +§x+§ 3 l(2x+lj
G+ (x+2) 5@+2) 41 5x+2) 5(x*+1
2
x“+x+1 3¢ dx 1 2x 1 1
—_— == +- dx+— dx
Therefore, I(x2+1)(x+2) ij+2 57 ij2+1

= —310g| x+2|+llog| x* +1|+ltan’1x+C
5 5 5

EXERCISE 7.5 |
Integrate the rational functions in Exercises 1 to 21.
X ) 1 3 3x -1
G+1) (x+2) " x?-9 T a-D@x-2)(x-3)
X 2x 1-x°
4. 5. 5 6. ———
x-Dx-=2)(x=3) X +3x+2 x (1-2x)
X X 3x+5
7. —S————— 8. ————— 9. T2 .
Gr+D) (x=1) -1 (x+2) X —x —x+1
" 2x-3 " 5x . X+ x+1
Tt (2x+3) T+ (-4 Toxr-1
2 3x-1 1
13. 14. 15.

A—x)1+x>) (x+2)° -1

1
sl . : n—1 n —
16. o+ D) [Hint: multiply numerator and denominator by x “~' and putx" =t ]

17 COS X H s
© U_sinx)@_siny LHint:Putsinx=7]
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18 @D G’ +2) g — 2 L, L
TP+ +D TP+ D (P +3) Cx =D
1
21. @ -1 [Hint : Put ex =]

Choose the correct answer in each of the Exercises 22 and 23.

22. Ix— equals
(x—1D (x-2)
2 2
(A) log -1 +C (B) log x=2) +C
x—=2 x—1
x—1)
(C) log (x—2) +C (D) log|(x=1)(x=2)|+C
dx
23. jm equals
(A) loglx|—%log(x2+l)+C (B) 1og|x|+1210g(x2+1)+c

1 1
(C) —log |x|+510g(x2+1)+C (D) Elog|x|+log(x2+1)+c

7.6 Integration by Parts

In this section, we describe one more method of integration, that is found quite useful in
integrating products of functions.
If u and v are any two differentiable functions of a single variable x (say). Then, by
the product rule of differentiation, we have
dv  du
—Wv) = u—+v—
_ _ dx dx  dx
Integrating both sides, we get

uy = J.u%dx+‘|.v%dx

dv du
or u—dx = uww— |v—dx .o (1
J. dx I dx @)
dv
Let u =f(x) and E: g (x). Then
d_u

=/ and v = [ g0 ax
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Therefore, expression (1) can be rewritten as

[reg@dr = f0f g dx—[1] @) dxl f/(x) dx
ic. [rog@dr = f@fg@de-[1f () [g0drldx

If we take f as the first function and g as the second function, then this formula
may be stated as follows:

“The integral of the product of two functions = (first function) x (integral
of the second function) — Integral of [(differential coefficient of the first function)
x (integral of the second function)]”

Example 17 Find Ixcos xdx

Solution Put f (x) = x (first function) and g (x) = cos x (second function).
Then, integration by parts gives

jxcos xdx = xjcos xdx—j[%(x)jcosxdx]dx

xsinx—.[sinxdx =xsinx+cosx+C

Suppose, we take fx) =cos x and g(x) =x. Then

jxcos xdx

cos x J.xdx - J.[%(cos X) dex] dx

2 2
X . X

Ccos x) — + | sin x —dx
(cos x) > | >

Thus, it shows that the integral I x cos xdx is reduced to the comparatively more

complicated integral having more power of x. Therefore, the proper choice of the first
function and the second function is significant.

Remarks
(1) It is worth mentioning that integration by parts is not applicable to product of
functions in all cases. For instance, the method does not work for J.\/; sin x dx .
The reason is that there does not exist any function whose derivative is

\/; sin x.

(i) Observe that while finding the integral of the second function, we did not add
any constant of integration. If we write the integral of the second function cos x
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as sin x + k, where k is any constant, then

J.xcos xdx = x (sin x+k)—f(sin x+k)dx

X (sinx+k)—j(sinxdx—jk dx

x (sin x+k)—cos x —kx+C = xsin x+cos x+C

This shows that adding a constant to the integral of the second function is
superfluous so far as the final result is concerned while applying the method of
integration by parts.

(iii) Usually, if any function is a power of x or a polynomial in x, then we take it as the
first function. However, in cases where other function is inverse trigonometric
function or logarithmic function, then we take them as first function.

Example 18 Find Ilog x dx

Solution To start with, we are unable to guess a function whose derivative is log x. We
take log x as the first function and the constant function 1 as the second function. Then,
the integral of the second function is x.

d
H , logx.1)dx = log x |1dx— |[— (log x) |1 dx]dx
ence J.(gx) gf Idx(g)f
=(10gx)-x—_[lxdx:xlogx—x+c.
X

Example 19 Find Ix e*dx

Solution Take first function as x and second function as e*. The integral of the second
function is e*.

Therefore, jxexdx —xeé __[1' edx = ye'—e' + C.

E le 20 Find dex
xample in
P \ll—x2

X
Solution Let first function be sin ~'x and second function be =
1—x
. . . . xdx
First we find the integral of the second function, i.e., I
1—x?

Put r =1 — x%. Then dt = — 2x dx
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xdx 1 ¢dt
Therefore, Iﬁ = _Ej.ﬁ = —\,;:—\ll—xz

s -1
Hence, I)i/jlil_xjcdx (sinlx)(—\ll—)cz)—j\/l_l_x2 (—\ll—xz)dx
= 1= sin x4 x4C = x—Afi- % sin"'x+C

Alternatively, this integral can also be worked out by making substitution sin'x =0 and
then integrating by parts.

Example 21 Find Iex sin x dx

Solution Take e as the first function and sin x as second function. Then, integrating
by parts, we have

Izjex sin xdx=e"(—cos x)+_|.e"cosxdx

=—e*cos x + I, (say) .. (1)
Taking e*and cos x as the first and second functions, respectively, in I, we get

I, = e* sin x—Ie"sin xdx

Substituting the value of I in (1), we get
I=-¢"cosx+esinx—1 or 2l =¢* (sin x — cos x)

X

Hence, I= Ie" sinxdxz%(sin x—cosx)+C

Alternatively, above integral can also be determined by taking sin x as the first function
and e*the second function.

7.6.1 Integral of the type Iex [ f(x)+ f (x)]dx
We have = [e" [f)+ f/@)ldx = [erfe dx+[e' /o) dx
= Il+Iexf'(x)dx,wherellzjexf(x)dx . (D)
Taking f(x) and e* as the first function and second function, respectively, in | | and

integrating it by parts, we have I, = f (x) e*— J. f(x) e'dx+C
Substituting I in (1), we get

1= ' f()-[f(0)e'de+[e' fx)di+C = e fx)+C
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Thus, [e"Lf @)+ fOldr = ¢* f(x)+C

+1
) ds ()j—(’“ Le i

Example 22 Find (i) Iex(tan_ 1x+

Solution

1
(i) We have I=[e*(tan”'x+—=)dx
1+ x

1
1+ x°
Thus, the given integrand is of the form e* [ f (x) +f'(x)].

Consider f(x) = tan"'x, then f’(x) =

Therefore, 1= J.ex (tan~'x+ =) dx = e tan'x + C

1+ x

(ii) We have 1= J-(x +1)e" _J 1+1+1) de

(x +1)? (x+1)2

x2-1 2 x—1 2
= X d = x
Ie [(x+1)2+(x+1)2] ! Ie [x+1+(x+1)2]dx

-1 ,
Consider f(x)= % ,then f ()= Gt

Thus, the given integrand is of the form e* [f (x) + f ' (x)].

X +1 x—1
Therefore, J —e dx = e+ C
x+1 x+1
|EXERCISE 7.6
Integrate the functions in Exercises 1 to 22.
1. xsinx 2. xsin 3x 3. x?e 4. xlogx
5. xlog2x 6. x*log x 7. xsin'x 8. xtan™ x
9. x cos™ 10. (sin'x)? jp, IS 12. x sec?
. X X . X . .X X
\Il X

13. tan~%x 14. x (log x)y 15. (x*+ 1) logx
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' xe o[ 1+sinx
16. e* (sinx + cosx) 17. 1+x)] 18. € 1 +cos x
. (1 1 j x=3)e" N
e — e — — .
19. 2 20. (x—1)3 21. e*sinx

2
22. sin‘l( sz
1+ x

Choose the correct answer in Exercises 23 and 24.

23. Ix2ex3dx equals
1 3 1 x?
(A) —e" +C (B) e +C
3 3

X

1 1 .
—e" +C —e* +C
© 3 (D) e
24. jexsecx(1+ tan x) dx equals
(A) e*cosx+C (B) e*secx+C
(C) ersinx+ C (D) etanx+ C

7.6.2 Integrals of some more types

Here, we discuss some special types of standard integrals based on the technique of
integration by parts :

W [F-aar @) [VP+ad e i) [V -x dx

(i) Let IZJ- X —a* dx

Taking constant function 1 as the second function and integrating by parts, we
have

N ey ——xdx

x—a

\/_ Ix —-a’ +ad’

_)C’\}X —Cl — \,7

[ -
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)C‘\/Xz -a* —j\/xz —-a* dx—asz

’2 2
X —da

xNx—d? —I—azj‘L
\lxz—a2
dx
or 2l = xxlxz—az —azjﬁ
2

or I= J'\/xz_az dx = %\/xz -a’ —a?log x+yVxt-a?

Similarly, integrating other two integrals by parts, taking constant function 1 as the
second function, we get

= 2
(i) I x* +“2dx=12x\lx2 +a’ +a?log|x+m

2
(ii) I a’ - xdx =% xa’ - x* +a7sin'1£ +C
a
Alternatively, integrals (i), (ii) and (iii) can also be found by making trigonometric

substitution x = @ sec in (i), x = a tan® in (ii) and x = @ sin 0 in (iii) respectively.

Example 23 Find I\/ X 42x+5 dr

Solution Note that

J\/x2+2x+5 dx = N(Hl)2 +4 dx

Put x + 1 =y, so that dx = dy. Then

J\/x2+2x+5 dx = J‘\/yz +2% dy

1 > 4
- +4 +=1Io
Zy y > g

+C

+C

Yy +4 |+C [using 7.6.2 (ii)]
1
E(x+1)\/x2 +2x+5 +210g| x+1+\/x2 +2x+5 | +C

Example 24 Find _[ 3-2x—x7 dx

Solution Note that IV3— 2x—x2 dx =J.«J4—(x+1)2 dx
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Put x + 1 =y so that dx = dy.

Thus _[\/3— 2x—x2 dx = 1\14—)’2 dy
1 4 . _
= E ,/4— y2 + E sin 1%+C [using 7.6.2 (iii)]

- %(x+1)\/3—2x—x2 +2 sin_l(xTHj+C

|[EXERCISE 7.7 |

Integrate the functions in Exercises 1 to 9.

[N 2. \1-4x 3. +4x+6

4. X +4x+1 5. \1-4x-x° 6. Nx*+4x-5
2
X
7. N1+3x—x? 8. x* +3x 9. 1+?
Choose the correct answer in Exercises 10 to 11.
10. I\/1+x2 dxis equal to
1
(A) %\ll+x2+zlog(x+\/1+x2) +C
2 2 2 3
(B) 5(1+x2)2 +C (©) 5x(1+x2)2 +C

(D) §m+%leog x+m
11. Im dx is equal to

(A) %(x—4)\/m+9log x—4+M|+C

(B) %(x+4)\/x2—8x+7+910g x+4+M|+C

©) %(x—4)\'x2—8x+7—3\510g|x—4+\/x2—8x+7|+c

D) %(x—4)\/x2—8x+7—%log x—4+\M|+C

+C
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7.7 Definite Integral

In the previous sections, we have studied about the indefinite integrals and discussed
few methods of finding them including integrals of some special functions. In this
section, we shall study what is called definite integral of a function. The definite integral

has a unique value. A definite integral is denoted by I ’ f(x) dx, wherea is called the

lower limit of the integral and b is called the upper limit of the integral. The definite
integral is introduced either as the limit of a sum or if it has an anti derivative F in the
interval [a, b], then its value is the difference between the values of F at the end
points, i.e., F(b) — F(a). Here, we shall consider these two cases separately as discussed
below:

7.7.1 Definite integral as the limit of a sum

Let f be a continuous function defined on close interval [a, b]. Assume that all the
values taken by the function are non negative, so the graph of the function is a curve
above the x-axis.

The definite integral I ’ f () dx is the area bounded by the curve y = f(x), the

ordinates x = a, x = b and the x-axis. To evaluate this area, consider the region PRSQP
between this curve, x-axis and the ordinates x = a and x = b (Fig 7.2).

Y
N S
M7D/
CL
/f&ﬂ L
Q
P A B R
X' e — >X
OVa=x0 X X, X, X x,,=b
YI
Fig 7.2

Divide the interval [a, b] into n equal subintervals denoted by [xpx 1 [x, x] ...,
x _,xl.lx _,x] where X,=a,x =a+ h, xX,=a+ 2h, ..., x =a+ rh and

xn=b=a+nh0rn= - We note that as n — o, h — 0.
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The region PRSQP under consideration is the sum of n subregions, where each
subregion is defined on subintervals [x,, » xr], r=1,2,3,...,n.

From Fig 7.2, we have

area of the rectangle (ABLC) < area of the region (ABDCA) < area of the rectangle
(ABDM) .. (1)

Evidently as x, — x,_, — 0, i.e., h — 0 all the three areas shown in (1) become
nearly equal to each other. Now we form the following sums.

n—1
s =h[fix) + ...+ fx, )= h2 F(x) )
r=0
and S, = hF)+ ()4t fOI=hY () e
r=1

Here, s, and S, denote the sum of areas of all lower rectangles and upper rectangles

raised over subintervals [x_,x] forr=1, 2,3, ..., n, respectively.
In view of the inequality (1) for an arbitrary subinterval [x _, x ], we have
s, < area of the region PRSQP < S e (4

Asn — oo strips become narrower and narrower, it is assumed that the limiting
values of (2) and (3) are the same in both cases and the common limiting value is the
required area under the curve.

Symbolically, we write

limS, _ li - ’
A0S, = UM S, = area of the region PRSQP = I af(x)dx .. (5)

It follows that this area is also the limiting value of any area which is between that
of the rectangles below the curve and that of the rectangles above the curve. For
the sake of convenience, we shall take rectangles with height equal to that of the
curve at the left hand edge of each subinterval. Thus, we rewrite (5) as

jabf(x)dx = ynéh[f(a)+f(a+h)+...+ fla+m-1h]

o [IIdr = -0 lim~f@+ flath 4ot fat -DE . (6)

b-a
where h= ” —0asn— o

The above expression (6) is known as the definition of definite integral as the limit
of sum.

Remark The value of the definite integral of a function over any particular interval
depends on the function and the interval, but not on the variable of integration that we
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choose to represent the independent variable. If the independent variable is denoted by

t or u instead of x, we simply write the integral as I ’ f(t)dt or I ’ f(u) du instead of

b
J.a f(x) dx . Hence, the variable of integration is called a dummy variable.

2
Example 25 Find Io (x> +1) dx as the limit of a sum.

Solution By definition

jbf(x)dx = ®B-a) liml[f(a)+f(a+h)+...+f(a+(n—1)h],
a n—e pn

where, h =
n

. 2-0 2
In this example, a=0,b=2,f(x) =x*+ 1, h= =—

non
Therefore,

2(n-1)

n

[le+nar = 2 im SO+ £+ FO 4.+ f( )
n—e p n n

2 2 5
= 2limafi+ (s +) +(4—2+1)+...+[_(2” ~2) +1J]
n n n

n—en

= 2lim l[(1+1+...+1)+i2(22+42+...+(2n_2)2]
n_)mn n-terms n
. 1 22 2 2 2
= 2lim-[n+= P +2°+..+@-1’]
n

n—eo pp

1 4 (=Dn@n-1)

= 2lm-[n+
'H°°n[ n? 6 ]
1 2(n-1) 2n-1
T N G C. Lt
n—eo 3 n

21 [1+2(1 1) 2 1)] 2 [1+4] 14
= m —-l— ——)| = -] =
n—se 3 n n 3 3
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2
Example 26 Evaluate I o e" dx as the limit of a sum.
Solution By definition
2 4 2n -2

2 1 2 4
.[ fde=Q2-0)lim—|e+er+e" +..4e "
0 n—e p

2
Using the sum to n terms of a G.P., where a = 1, r=¢", we have

2n

T z
[ et dx= 2tim A=l C 2w L &L
0 n—e p % n—e p z
e"—1 e"—1
2(¢ -1 )
- —_— 2 : -
= 2 =e?—1 [using }llg(l) - 1]
li — |2
wom | 2
n
|[EXERCISE 7.8 |
Evaluate the following definite integrals as limit of sums.
b 5 32
1 [Cxax 2. [ (x+Ddx 3 [0 dx
4 J.4(x2—x)dx 5 J-lexdx 6 I4(x+ezx)dx
: 1 RS “Jo
Y =
7.8 Fundamental Theorem of Calculus V=S
7.8.1 Area function
We have defined Ih f(x)dx as the area of
the region bounded by the curve y = f(x), N
the ordinates x = a and x = b and x-axis. Let x )
be a given point in [a, b]. Then J'a F(x) dx X o + X

represents the area of the light shaded region Y’ Fig 7.3
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in Fig 7.3 [Here it is assumed that f(x) > O for x € [a, b], the assertion made below is
equally true for other functions as well]. The area of this shaded region depends upon
the value of x.

In other words, the area of this shaded region is a function of x. We denote this
function of x by A(x). We call the function A(x) as Area function and is given by

A@) = [ f(x)dx (1)

Based on this definition, the two basic fundamental theorems have been given.
However, we only state them as their proofs are beyond the scope of this text book.
7.8.2 First fundamental theorem of integral calculus
Theorem 1 Let fbe a continuous function on the closed interval [a, b] and let A (x) be
the area function. Then A’(x) =f (x), for all x € [a, b].

7.8.3 Second fundamental theorem of integral calculus

We state below an important theorem which enables us to evaluate definite integrals
by making use of anti derivative.

Theorem 2 Let f be continuous function defined on the closed interval [a, b] and F be
b

an anti derivative of f. Then I f(x)dx=[F(x )]Z = F (b) - F(a).
a

Remarks

(1) Inwords, the Theorem 2 tells us that J ’ f (x) dx = (value of the anti derivative F
of fat the upper limit b — value of the same anti derivative at the lower limit a).

(i) This theorem is very useful, because it gives us a method of calculating the
definite integral more easily, without calculating the limit of a sum.

(@iii) The crucial operation in evaluating a definite integral is that of finding a function
whose derivative is equal to the integrand. This strengthens the relationship
between differentiation and integration.

@iv) In J. ’ f (x) dx , the function f needs to be well defined and continuous in [a, b].

1
. . . L 3 5 .
For instance, the consideration of definite integral J. x(x* =1)2 dx is erroneous
-2

1
since the function f expressed by f(x) = x(x* —1)2 is not defined in a portion

— 1 <x <1 of the closed interval [- 2, 3].
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Steps for calculating I ’ fx)dx.

(i) Find the indefinite integral _[ f(x) dx . Let this be F(x). There is no need to keep

integration constant C because if we consider F(x) + C instead of F(x), we get
[ " f @) dx=1F (x)+ CI, = [Fb) + CI- [F(@) + C1 =F(b) - F(a)

Thus, the arbitrary constant disappears in evaluating the value of the definite
integral.

. b C . b
(i) Evaluate F(b) — F(a) = [F(x)],, which is the value of I f(x)dx.
We now consider some examples

Example 27 Evaluate the following integrals:

3 o Jx
i [, de i) J,———dx
(30— x2)*
(ki) I2¢ @iv) Iozsin32tcos2tdt

Tx+D) (x+2)
Solution

. _ 3.2 . 2 _X3_

(1) LetI—sz dx . Since jx dx—?—F(x),

Therefore, by the second fundamental theorem, we get

27 8 19
I=F(3)-FQ)=—-==—
(3) - F( 373 3
) o Ax o o .
() Let I= J e — dx . We first find the anti derivative of the integrand.

(30 —x2)?

3

3 2
Put 30 —x2 =1. Then—%\/;dx:d; or \/;dx:_gdt
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Therefore, by the second fundamental theorem of calculus, we have

9

1= F(9)-F(4) =2 ——

(30— x2) \

e M P
T 3|(30-27) 30-8| 3|3 22] 99

2 xdx

i) Let 1o [P—Xdx
() Le J.1()c+1)(x+2)

-1 2
= +
x+D(x+2) x+1 x+2

Using partial fraction, we get

So J. x dx = —log| x+1|+2log| x+2|=F(x)

(x+ 1) (x+2)

Therefore, by the second fundamental theorem of calculus, we have
I=F2)-F()=[-log3+2log4]—[-log2+2log 3]

32
=-3log3+log2+2log4=log >
b
(iv) Let I= J.O“ sin® 27 cos2 ¢ dr . Consider jsinS 2t cos2 t dt

1
Put sin 27 = u so that 2 cos 2t dt= du or cos 2t dt = E du

1

.3 3

t tat — |w’du
So ISll’l 2t cos2td I

14 1 .y
= —[u']==sin" 2t =F (¢)sa
8 8 Y
Therefore, by the second fundamental theorem of integral calculus

T 1 .4 .4 1
I=F(=)-F(0)=—[sin" ——sin" 0] =—
(4) 0) 8[ > ] 2
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|[EXERCISE 7.9
Evaluate the definite integrals in Exercises 1 to 20.
1 2
l.jEAX+Ddx 2. IZ;dx 3.0 [ @x' -5 +6x+9) de
z x 5 x
4. j04sin2xdx 5. I(fcos2xdx 6. f4€xdx 7. j;tanxdx
T
7 1 dx 1 dx 3 dx
8. [ fcosecxdr 9. 10. 1. | .=
g .[O 'l—xz -[01+x2 2x —1
z 3 xdx 12x+3 1
2 X
12 [Zco xdx 1. I2x2+l 14. I05x2+1dx 15. [ xe“dx

2 5x2 2 2 3 n . 2x 2x
16. — 17. | *@2sec” x+x’ +2)d 18. (sin® = —cos” =) dx
8 M= JFewecxex+dx 8. [ G 2

26x+3

19.
f 0 x*+4
Choose the correct answer in Exercises 21 and 22.

L Tx
dc 20. jo(xe +sin—) de

6
21. equals
Il 1+ x° q
A) = ®) = ©) = D) —
3 3 6 12
2
22. .f034+9x2 equals
A T B T C D T
(A) 2 ®) © 3; @) 5

7.9 Evaluation of Definite Integrals by Substitution

In the previous sections, we have discussed several methods for finding the indefinite
integral. One of the important methods for finding the indefinite integral is the method

of substitution.
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b
To evaluate I f (x) dx, by substitution, the steps could be as follows:

1.
the given integral to a known form.
2.
the constant of integration.
3.
variable.
4.

Consider the integral without limits and substitute, y = f(x) or x = g(y) to reduce
Integrate the new integrand with respect to the new variable without mentioning
Resubstitute for the new variable and write the answer in terms of the original

Find the values of answers obtained in (3) at the given limits of integral and find

the difference of the values at the upper and lower limits.

so that we can perform the last step.

In order to quicken this method, we can proceed as follows: After

performing steps 1, and 2, there is no need of step 3. Here, the integral will be kept
in the new variable itself, and the limits of the integral will accordingly be changed,

Let us illustrate this by examples.

1
Example 28 Evaluate J 715x4 X +1dx.

Solution Put = x5+ 1, then dt = 5x* dx.

Therefore, .[ 5x X +1dx

Hence,

j 115x4 x> +1dx

S} K%}

PP+1) —((—1)5 +1)'2

|

} _ z(zﬁ)zﬁ
3 3

3 3
22 _(2

Alternatively, first we transform the integral and then evaluate the transformed integral

with new limits.
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Let t=x+ 1. Then dt = 5 x* dx.
Note that, when x=—1,tr=0and whenx=1,r=2
Thus, as x varies from — 1 to 1, ¢ varies from O to 2

[ a

2
2030 2[5 3| 2 4\
3{r}_3{2 0 :3(2@_ 3

0

1
Therefore I 715x4 x> +1dx

1 tan”'x
5 dx

Example 29 Evaluate .[0 "
+ X

Solution Let # = tan ~'x, then df =

o dx . The new limits are, when x =0,¢=0 and
+ X

0 . . T
whenx =1, [:Z . Thus, as x varies from O to 1, ¢ varies from O to Z .

1 tan”' x SRR °
Therefore I dx= _[ tdt|—| =-— —0|==—
0 14 x? 2, 2116 32

|[EXERCISE 7.10 |

Evaluate the integrals in Exercises 1 to 8 using substitution.

Iz 1, 2
.[] T dx 2. J.OZ.'sin(bcoss(bdd) 3. I051n I(Hizjdx

0x° +1
2 _sinx
4. [ 542 putxr2=1) 5. j al
0 1+cos? x
2 dx 1 dx 2( 1 1 2
6. —_— 7. - 8. ——— | e dx
IO x+4-x J“1)c2+2x+5 '[l(x 2x2]
Choose the correct answer in Exercises 9 and 10.
1
—_ )3
9. The value of the integral J : wdx is
=X
3
(A) 6 (B) 0 ©) 3 (D) 4
10. Iff(x) = [ #sintdr, then f(x) is
(A) cosx + x sin x (B) x sinx

(C) x cosx (D) sinx + x cosx
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7.10 Some Properties of Definite Integrals

We list below some important properties of definite integrals. These will be useful in
evaluating the definite integrals more easily.

P: [ fde=["rwa
P : Iabf(x)dx=—jsf(x)dx.ln particular, '[:f(x)dxzo
P: ja”f(x)dx:j:f(x)dHjcbf(x)dx
b b
P,: jaf(x)dx=ja fla+b—x)dx

P,: j:f(x)dx:jo“f(a—x)dx

(Note that P, is a particular case of P,)

P [ f@de=[foder [ fa-x)de

i [ fac=2f@dxif fQa-x)=f@) and
0if f2a—x) = - f(x)
P:oG) | fa fxydx=2] 0 f(x)dx, if fis an even function, i.e., if f(—x) = £ (x).

(ii) j_ f(x)dx=0, if fis an odd function, i.e., if f(- x) = — f(x).

We give the proofs of these properties one by one.
Proof of P It follows directly by making the substitution x = 7.
Proof of P Let F be anti derivative of f. Then, by the second fundamental theorem of

b a
calculus, we have jaf(x)dsz(b)—F(a)=—[F(a)—F(b)]:—Ibf(x)dx

Here, we observe that, if a = b, then _f:f(X) dx =0.
Proof of P, Let F be anti derivative of f. Then
b
[ rdx =F@) - Fay (D)

[ f(x)dx =F(c) - F(a) Q)

and jb f () dx =F(b) - F(c) ()
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Adding (2) and (3), we get J.: f(x)dx+J.cbf(x) dx=F®)-F(a)= J.: f(x)dx
This proves the property P,.

ProofofP3 Lett=a+b—x. Thendf =—dx. Whenx=a, t =b and whenx = b, t = a.
Therefore

I: fx)dx

—IZf(a+b—t) dt

["fa+b-nyd wyp)

= ["fa+b-x)dv by P,

Proof ofP4 Putt=a—x. Then df =— dx. When x =0, ¢t =a and when x = a, t =0. Now
proceed as in P..

Proof of P_ Using P, we have Iozaf(x) dx= J.Oaf(x) dx+Ijaf(x) dx.

Let t = 2a — x in the second integral on the right hand side. Then
dt =—dx. Whenx =a,t=aand when x =2a, t =0. Also x =2a—1.
Therefore, the second integral becomes

2a 0 a a
[ reac=-[ f@a-ndi = [ r@a-ndi = [ fa-xa
2a a a
Hence jo f(x)dx = jof(x)dx+j0f(2a—x)dx
Proof of P, Using P, we have Iozaf(X) dx =I:f(X) dx +I§f(2a —Xx) dx .. (D
Now, if fQRa — x) =f(x), then (1) becomes

2a a a a
[ feya = [ r@de ] fede=2] (0 dx,
and if fQa — x) =— f(x), then (1) becomes

[y f@de=[ f @) dx=0

2a
[, feoar
Proof of P, Using P,, we have

J._aaf(x) dx J-ilf(x) dX+I0af(x) dx Then

Let t = — x in the first integral on the right hand side.
dt = — dx. When x=— a, t = a and when
x=0,t=0. Alsox=—-1t.
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a 0 a
Therefore j f()dx = - j fnd +j0 F(x)dx

= [ fEde+ [ f@dx  (byP) ..(1)

(1) Now, if fis an even function, then f(-x) = f(x) and so (1) becomes

J [ fde= [ fedx+ [ [ fxde =2 f(x)ds

(i) If fis an odd function, then f(—x) = — f(x) and so (1) becomes
I_af(x)dx= —jof(x)dx+j0 F(x)dx=0
2
Example 30 Evaluate ..‘71 | X —x |a’x

Solution We note that x> — x>0 on [- 1, 0] and x* — x £ 0 on [0, 1] and that
x*—x20on[I, 2]. So by P, we write

-1

_[2 | X —xldx = J‘_Ol(x3 —x)dx+j;—(x3 —)c)dx+J.12(x3 —x)dx

= J._Ol(x3 —X) dx+.[;(x —x3)dx+J.12(x3 —x)dx

)C4 X2 ’ X2 )C4 1 )C4 X2 ?
4 2], |2 4 4 2

|

|

TN
A=
|

N | =
~—
_I_

TN
o=
|

e
~—
+

—_
N

|

()

N—
|
TN
A=
|

| —
—

|
|
|

+
|

+
|
|
|

Example 31 Evaluate J 4nsin2 xdx

4
Solution We observe that sin® x is an even function. Therefore, by P, (i), we get

T

¥
I 47: sin? xdx = 2[04 sin? x dx

T
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g (1—cos 2x)
2

1 . 7 T 1. = T 1
=|x—-=—sin2x| =|———sin— |[-0=———
2 0 4 2 2 4 2

T xsinx

dx = jf(l—ooszx)dx

Example 32 Evaluate _
P I 01+cos’x

T xsinx

Solution Let I = I dx . Then, by P o We have

2
01+cos”x

n (T—x)sin (T—x) dx
0 1+cos?(m—x)

_ Jaon (T—x)sinxdx anr sin x dx _1

1+cos’ x 01+cos? x

n sin x dx
21= 1| "———

or 5
0 1+cos”x
nsmxdx

or ——I
0 1+cos’x

Put cos x =¢ so that — sin x dx =dt. Whenx=0,7=1 and whenx =7, t = — 1.
Therefore, (by P)) we get

-7 -1 dt Tl dt
I= 1 2 = a 2
2 1+¢ 2 1+¢
M 1 . .
=T 5 since > is even function)
01+t I+1

2

= n[tanflt]; zft[tanfll—tan_1 OJ:n[§_0}:%

Example 33 Evaluate Il sin” x cos”* x dx

1
Solution Let I = J. 1sin5 xcos* xdx . Let f{x) = sin’ x cos* x. Then

f(=x)=sin’ (- x) cos* (— x) = — sin’ x cos* x = — f(x), i.e., fis an odd function.
Therefore, by P, (ii), [ =0
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T
Example 34 Evaluate J 2%dx
0 sin” x+cos” x
= sin*
Solution Let I = I 2%[1)6 (1)
0 sin” x+cos” x
Then, by P,
x sin* (%— X) T cos? x
> x
I= dx = [2—————dx ... (2)
I '[0 cos* x+sin* x

0 . 4 T 4, T
sin (——x)+cos (——x
(2 ) (2 )

Adding (1) and (2), we get

= sin* x+cos* x = 2 T
A= |2 20— = dx=| 2dx=[x)* ==
IO sin* x+cos* x '[0 0o 2
Hence 1= I
4
T
3 dx
Example 35 Evaluate J N
= l++tan x
6
T T
. 3 d z ,/cos x dx
Solution LetI = j 3—x=.[2 —_— .. (1)

Then, by P, 1= |

B j§ Jsin x
B gdsinx+ COS X

Adding (1) and (2), we get

dx .. (2)

T
2] = I;dxz[x]
6

T T T T
=———=—_Hence [=—
3 6 6 12

T
3
T
6
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T

Example 36 Evaluate Iflo g sin x dx

T
Solution Let I = .[02 logsinx dx

Then, by P,
T T
) T _[2
I= Io logsm(2 xjdx—jologcosxdx

Adding the two values of I, we get

K

21 = J.Oi(log sin x +logcos x) dx

wla

= .[o (log sin x cos x +1log 2 —log 2) dx (by adding and subtracting log 2)

= Jflog sin2x dx—J.OElogde (Why?)

T
Put 2x =t in the first integral. Then 2 dx =dt, when x =0, =0 and when x = 5,
1 =T

Therefore 2l = lJ.nlo sintdt—zlo 2
270 g 2 g

23 . T
EIOQ log smtdt—z log2 [by P as sin (T —1) = sin 1)

T

J.Oilog sinx dx — glogz (by changing variable ¢ to x)

T
= I——IO 2
> g

T

T -7
Hence Iozlog sinxdx = 710g2_
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| EXERCISE 7.11 |

By using the properties of definite integrals, evaluate the integrals in Exercises 1 to 19.

3

’_2‘ smx 5 sin? xdx
1. I cos” xdx j \/_ ———dx 3. .[o 3 3
sin x +/cos x .5 5

sin? x+ cos? x

X 5 dx 5 8
4, [P 22 XE 5, lx+ 21 dx 6. x—5|dx
J-O sin’ x + cos’ x J.‘S J.zl |
1 z 2
7. [ x(-x)de 5. [Fog+tmxydr 9. [ x2-xdx
z =
10. IOZ(Zlogsinx—logsian)dx 11. J:z sin® x dx
o
T E 2n
12. X d 13, [2 sinxar 14, [ Teos’ x dx

01+sinx -

de 16, ["log(+cosx)de 17 [ S
. og (1+cosx . 0#
0 X+Na—x

T .

S sinx—cosx
5. |7 Snx-cor

0 1+sinxcosx

18.

o

I;lx—lldx

19. Show that Ioaf(x)g(x) dx=2 Iouf(x) dx, if fand g are defined as f(x) = f(a —x)

and g(x) + g(a—x) = 4
Choose the correct answer in Exercises 20 and 21.

T
20. The value of jfn(x3+xcosx+tan5 x+1)dx is
2

(A) O B) 2 (S (D) 1

T .
21. The value of .[02 log (%J dx is
+3cosx

3
(A) 2 B) 7 0 (D) -2
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Miscellaneous Examples

Example 37 Find I cos 6x 1+ sin 6x dx

Solution Put # = 1 + sin 6x, so that df = 6 cos 6x dx

1
Therefore Icos 6xJ1+sin 6x dx= é J.t_zdt

1 2 3 12
= —=X—(t)? +C= —=(1+sin 6x)2 +C
6 3 9

L
4

4
Example 38 Find J‘u dx
x

)%1 a __3)4

4
Solution We have (x;x x
e

Put 1—1—3=1—x_3 =t, sothat%dxzdt
X X

1

5
4_ N4 ! 3 7

Therefore J‘udx:—;j‘ﬂ dt = %x?t“ +C=14—5(1—i3j4 +C
X X

4
E le 39 Find J‘$
Xample (x—1) (x +1)
Solution We have
4
X
—_— - (x+ D)+
(x=D*+1) - +x-1
(x+1)+—1 1
- (x=Dx*+1) - (D
1 A Bx+C
Now express .. (2)

D@ 1D - =D 2+
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So I=AX+1)+Bx+C)(x-1)
=(A+B)X*+(C-B)x+A-C
Equating coefficients on both sides, we get A+ B=0,C-B=0and A-C=1,
which give A = l, B=C= 1 Substituting values of A, B and C in (2), we get
2 2
1 1 1 x 1
G=-D 2+ 2x=D 2(F+D) 2% +]D)
Again, substituting (3) in (1), we have

. (3

X! = (x+D)+ ! —l r !
(x=D & +x+1) 2Ax—=1) 2 (41D 2%+
Therefore
Xt X 1 1 1
j( e 1)dx:7+x+zlog|x—1|—Zlog(x2+1)—Etauf‘x+c
X— X" +x+

1
Example 40 Find | {IOg (log 0+ } dx

Solution Let Izj‘{log (lo,gx)+(1 ! )z}dx
og x

- jlog (log x) dx+j )
X

In the first integral, let us take 1 as the second function. Then integrating it by
parts, we get
+

1
[=xlog (logx)—.[ "
X

ogx

(log x)*
J. dx
logx (log x)2

=xlog (logx)— J. . (D)

Again, consider jldx
og x

- _ 1
we have Ilogx |:10gx .[ { (logx)z ( j} dx:l (2)

, take 1 as the second function and integrate it by parts,
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Putting (2) in (1), we get

Iloao)xjdx+jdx bog (logx)— ——+C
=x x)— - = xlog (logx)—
gL05 logx < (logx)* 7 (logx)? sos logx
Example 41 Find J. ['\/COt X+ tanx] dx
Solution We have
1= I[\/cotx+ tanx]dx =IJtanx(1+cotx) dx
Put tan x = £, so that sec® x dx = 2t dt
2t dt
or 4
1+1¢
1 2t
Then = It(1+—2j—4dt
) A+17)
241 (1 +—12jdt (1+ izj dt
o S—=d=2 = [
t*+1 2 1 1
r+-= t—=| +2
t t
1 1
Put t —- =y, so that 1+t_2 dt = dy. Then
t
1
dy y (t_;
=2 =2 tan"' ==+C =2 tan"' ~—=<
E e E G

. sin 2xcos 2x dx
Example 42 Find f—
\/9- cos’(2x)

sin 2 xcos 2x

V9 — cos* 2x

Solution Let 1= dx
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Put cos? (2x) = ¢ so that 4 sin 2x cos 2x dx = — dt

=——sm 1(£)+C=—lsin_l[l cos’ 2x}+C
3 4 3

Example 43 Evaluate j -21 | x sin (T x) |dx

Therefore =

xsinwxfor—-1<x<1

lution H = lx si =
Solution Here f(x) = |x sin 7x | —xsinnxforleS%

3 3
3 . 1 . > .
Therefore Izl lxsinTt xldx = I 1xsmﬂ:xdx+J.12—xs1n7txdx

3
1 . 3 .
= I 1xs1n7txd)c—J-lzxsmnxdx

Integrating both integrals on righthand side, we get

3
3 . 1 . -
3 ) —XCOSTX sinTx —XCOST X sinTx |2
I [xsinTxldx = + > — + >
= b o 1 i v |
2 1 1 3 1
= —— ===t =
T T on T

x dx

2 2 2 .2
a cos” x+b"sin” x

Example 44 Evaluate I On

xdx _J-n (m—x) dx

Solution LetI=
I 0 g? cos*(M— x)+b” sin*(w— x)

(using P))
0 g cos® x+b*sin’x &4

nf, 2

n[” e

In x dx

0 g?cos’ x+b*sin® x 70 g’ cos® x+b%sin’ x

-1

0 @ cos® x+b*sin® x

dx
n‘[ 2 . 2 2 . 2
0 a”cos“x+b sin“ x

Thus 21
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Tpen dx T z dx
or I== ==.2|2
2J.O a’cos’ x+b*sin’x 2 -[
dx z dx
+_|'2 }

™|
= 0 a’cos® x+b*sin*x Y1 a’cos® x+b’sin® x
4

using P)
P 5 (
0 g*cos” x+b”sin” x 6

EN B

T 2 I 2
7 sec xdx > cosec”xdx
,[ 2, 42, 2 +J. 2 2 2
0a"+b°tan"x ‘rma’cot”x+b
- 1
_J-l dt J~0 du
oat+bt* Y, dut+b?

=T

}(pmtanx: tandcotx= u)

1 0
2
1[tan1 E} — l{tanl ﬂ} - l{tan‘lé + ‘[an‘lg}= T
ab aly, ab bl ab a bl 2ab

Miscellaneous Exercise on Chapter 7

Integrate the functions in Exercises 1 to 24.

1 1 a
1. 2. 3. — == [Hint:Putx=—
0 Traidneh 0 adanoe mePute=l

1 1 . 1 1 .
4. - 3 S. T [Hint: T T T , put x =1°]
2t +1)4 x2 +x3 X2 +x3 x3 (1+ xﬁJ
5x sin x eSlogx _e4logx
6. ———>—— 7. ———— 8. S s
(x+1) (x"+9) sin (x —a) gl _ p2logx
COSX sin® —cos® x 1
- 10. — 5 11.
V4 —sin®x 1—2sin” xcos” x cos (x+a) cos (x+b)
N/ T l+eN)(2+€Y) T+ (P44
15. cos3x elogsin 16. e3loer (x* + 1) ! 17. f (ax + D) [f(ax + b)]"

1 0 sin”! x—cos”\/; (0. 1]
. .3 . . . — a-xe k]
|Jsin® xsin (x+o1) sin~'Vx +cos ' \x

18
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2+4sin2x | 25 X+ x+l
—_— . _—m
1+cos 2x (x+1)% (x +2)

” I +1[1og (x> +1) -2 log x]

4
X

U
5 cos’ xdx

Sin X COSX

d27.j

20 L
©Vi+4x
1 1—x
23. tan
1+x
Evaluate the definite integrals in Exercises 25 to 33.
n 1—sinx
. ! dx
25 jge (l—cos j 26.

3 = sin x+cos x

\'sm 2x
T

31. J.Oisin 2x tan "' (sin x) dx

—dx 29.

zsj

I;

4 2 -2
0 cos* x+sin*x 0 cos” x+4sin” x

T .
7 sinx +0osx

33. j14[x—1|+|x—2|+|x—3|]dx

Prove the following (Exercises 34 to 39)

logg

34.
J.lx 2(x+1) 3 3

1
36. I_lx17 cos* xdx=0

T
38. j042tan3xdx=1—1og2

'[\l1+x Jx 30 IO 9+ 16 sin 2x
1. jn X tanx dx
0 secx+tanx
35. J.;xexdle
T
37. J.Esin xdx—z
0 3
39, J‘;smlxdx: -1

I .
40. Evaluate J. e>3*dx as a limit of a sum.
0

Choose the correct answers in Exercises 41 to 44.

is equal to

41. j

e +e
(A) tan™ (e) + C
(C) log (e —e) +C
_[ cos2x

(A)

—X

42. ;

(sin x+cos x)
-1
—+C
sin x+cosx

(C) loglsinx —cosx|+C

(B) tan™ (e™) + C
(D) log (e"+ e™) +C

dx is equal to

(B) loglsinx +cosx|+C
1

(D) ——
(sinx+ cos x)
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Iff(a+b—x)=f(x), then ja"x £(x) dx is equal to

a+b b a+b ¢b
A = Iaf(b—x)dx B) = Iaf(b+x)dx
© 2! s 0 L[ o as
The value of Iltan_l (2x—_12jdx is
0 l+x—x
T
(A) 1 (B) 0 © -1 (D) 1

Summary

¢ Integration is the inverse process of differentiation. In the differential calculus,

we are given a function and we have to find the derivative or differential of
this function, but in the integral calculus, we are to find a function whose
differential is given. Thus, integration is a process which is the inverse of
differentiation.

d
Let p F(x)= f(x). Then we write J. f(x) dx =F(x)+C. These integrals

are called indefinite integrals or general integrals, C is called constant of
integration. All these integrals differ by a constant.

From the geometric point of view, an indefinite integral is collection of family
of curves, each of which is obtained by translating one of the curves parallel
to itself upwards or downwards along the y-axis.

Some properties of indefinite integrals are as follows:

LJlr@)+g@lde=[f (0 de+[ g (x)dx

2. For any real number &, J.k S(x)dx = kJ. f(x)dx

More generally, if f|, f,, f5, ... , f, are functions and k , k,, ... .k are real
numbers. Then

[Tk, /() +hy o () + 4K, £, ()]

=k [A) dxt ks, [ () det .+, [ £,(0) de
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€4 Some standard integrals

n+1

6] andx: ;C+1 +C, n#— 1. Particularly, Idx=x+C
(i1) ICOSde=Sinx+C (iii) Isinxdxz—cosx+C
@iv) ISﬂCZXdX:&HUHC (v) Icoseczxdx:—cotx+c

(vi) Isec xtan x dx=secx +C

dx . -1
(vii) Icosecxootxdxz—cosecx+C (viii) jﬁ:sm x+C
=

dx _ -1 dx _1
(ix) J_l_l—x2 =-cos x+C (x) ~[1+x2 =tan” x+C
dx _
(x1) f1+x2=—00t 'x+C (xii) Iexdx=ex+C
xo o A . de
(xiii) Ia dx—loga+C (xiv) I—,_xz_l—sec x+C

1
=—cosec 'x+C (xvi) J-—dx:loglxI+C
x

(xv) J'L
Wl -1

€ Integration by partial fractions

Recall that a rational function is ratio of two polynomials of the form P(x) ,

Q)
where P(x) and Q (x) are polynomials in x and Q (x) # 0. If degree of the
polynomial P (x) is greater than the degree of the polynomial Q (x), then we

may divide P (x) by Q (x) so that P =
Q(x)

T () + L2
Q(x)
polynomial in x and degree of P (x) is less than the degree of Q(x). T (x)

, where T(x) is a

P (x)

Q(x)

being polynomial can be easily integrated. can be integrated by
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P
expressing QIEX)) as the sum of partial fractions of the following type:
X
I —PEtq - A B
(x—a) (x—b) x—a x-b
px+gq A B
2. 2 = _ + 2
(x—a) x—a (x-a)
2
+qx+
3 pX qgx—T+r _ A i B o C
(x—a) (x=b) (x —c) x—a x—-b x—c
pxt+gx+r A B C
4., > = — + 2+
(x—a)” (x—b) x—a (x—a) x-b
X pxX’ +gxtr _ A, _Bx+C
C (x—a) (X +bx+c) x—a x +bx+c

where x> + bx + ¢ can not be factorised further.
€ Integration by substitution

A change in the variable of integration often reduces an integral to one of the
fundamental integrals. The method in which we change the variable to some
other variable is called the method of substitution. When the integrand involves
some trigonometric functions, we use some well known identities to find the
integrals. Using substitution technique, we obtain the following standard
integrals.

) J.tanxdx=10g|secx|+C (ii) J.cotxdleog|sinx|+C
(iii) Isecxdx=log|secx+tanx|+C

@iv) jcosecx dx =log| cosecx —cotx|+C

€ Integrals of some special functions

dx 1 x—a
i =—1Io +C
® '|.x2—a2 2a 2 x+a
dx 1 a+x dx 1 X
. =—Io +C =—tan ' =+C
(i) jaz—xz 2a 2 a—x (it J‘x2+az a an a
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(@iv) J‘\/i—log x+yx? —a® |+C (v) j\/i—sm 'Zic
i) j—:log|x+ X +a’ 1+C
Vi? +a°
€ Integration by parts
For given functions f, and f, we have
[AG)- 00 de= £, [ £o0) de = | [ A0 Ifz(x)dx} .. the

integral of the product of two functions = first function x integral of the
second function — integral of {differential coefficient of the first function x
integral of the second function}. Care must be taken in choosing the first
function and the second function. Obviously, we must take that function as

the second function whose integral is well known to us.
¢ [e1f()+ f () de=[e f(x)dx+C

€ Some special types of integrals

2
(1) J\/x —a’ dx= \/x —a —%log x+x* —a® [+C
(i) I\/x +a* dx = \/x +a? +?log x+\/x +a’|+C

2
(1i1) I\/az —x% dx =§\/a2 —x? +% sin_1£+ C

a
dx OI‘I
ax’> +bx+c \lax2 +bx+c

transformed into standard form by expressing

[2 b c} [ b)z c b
ax: +bx +c=0a|x +t—x+—|=a||x+— | + ———
a a 2a a 4a

px+qdx px+qdx

(v) Integrals of the types jax2+bx+c I\lax  brtc can be

(iv) Integrals of the types I can be
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transformed into standard form by expressing

px+q=Adi(ax2+bx+c)+B =A (2ax+b)+ B, where A and B are
X

determined by comparing coefficients on both sides.

@ We have defined j ’ f (x) dx as the area of the region bounded by the curve

y =f(x),a < x < b, the x-axis and the ordinates x =a and x = b. Letx be a

given point in [a, b]. Then J :f (x) dx represents the Area function A (x).

This concept of area function leads to the Fundamental Theorems of Integral
Calculus.
First fundamental theorem of integral calculus

Let the area function be defined by A(x) = J. : f (x) dx for all x > a, where
a

the function fis assumed to be continuous on [a, b]. Then A" (x) =1 (x) for all
x € [a, b].

Second fundamental theorem of integral calculus

Let f'be a continuous function of x defined on the closed interval [a, b] and

. d . .
let F be another function such that E F(x) = f(x) for all x in the domain of

b b
f then J.a fx) dx:[F(x)+C]a =F(®)-F(a).

This is called the definite integral of f over the range [a, b], where a and b
are called the limits of integration, a being the lower limit and b the
upper limit.

O/
L4



Chapter

(APPLICATION OF INTEGRALS)

¢ One should study Mathematics because it is only through Mathematics that

nature can be conceived in harmonious form. — BIRKHOFF

8.1 Introduction

In geometry, we have learnt formulae to calculate areas
of various geometrical figures including triangles,
rectangles, trapezias and circles. Such formulae are
fundamental in the applications of mathematics to many
real life problems. The formulae of elementary geometry
allow us to calculate areas of many simple figures.
However, they are inadequate for calculating the areas
enclosed by curves. For that we shall need some concepts
of Integral Calculus.

In the previous chapter, we have studied to find the
area bounded by the curve y = f (x), the ordinates x = a,
x = b and x-axis, while calculating definite integral as the
limit of a sum. Here, in this chapter, we shall study a specific
application of integrals to find the area under simple curves,
area between lines and arcs of circles, parabolas and
ellipses (standard forms only). We shall also deal with finding
the area bounded by the above said curves.

8.2 Area under Simple Curves

In the previous chapter, we have studied
definite integral as the limit of a sum and
how to evaluate definite integral using

we consider the easy and intuitive way of
finding the area bounded by the curve §
vy =f(x), x-axis and the ordinates x = a and
x = b. From Fig 8.1, we can think of area
under the curve as composed of large x=a
number of very thin vertical strips. Consider
an arbitrary strip of height y and width dx,

Fundamental Theorem of Calculus. Now, / ——

A.L. Cauchy
(1789-1857)

y=f)

/=

then dA (area of the elementary strip) = ydx, X<g P
where, y = f(x).
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This area is called the elementary area which is located at an arbitrary position
within the region which is specified by some value of x between a and b. We can think
of the total area A of the region between x-axis, ordinates x = a, x = b and the curve
vy =f (x) as the result of adding up the elementary areas of thin strips across the region
PQRSP. Symbolically, we express Y

y=d
b b b
A= IadAzjaydx=Iaf(x)dx
The area A of the region bounded by dy = \
the curve x = g (v), y-axis and the lines y = ¢, x=g0)
y =d is given by 8
d d y=c
A:L xdsz.C g(y)dy X'<5 X
Here, we consider horizontal strips as shown in Y’
the Fig 8.2 Fig 8.2

Remarlk If the position of the curve under consideration is below the x-axis, then since

f(x) <0 fromx=atox =b, as shown in Fig 8.3, the area bounded by the curve, x-axis

and the ordinates x = @, x = b come out to be negative. But, it is only the numerical

value of the area which is taken into consideration. Thus, if the area is negative, we
b

[7r 0o de

take its absolute value, i.e.,

— - =

AT
y/s

v

Y’ Fig 8.3

Generally, it may happen that some portion of the curve is above x-axis and some is
below the x-axis as shown in the Fig 8.4. Here, A, <0 and A, > 0. Therefore, the area
A bounded by the curve y = f(x), x-axis and the ordinates x = @ and x = b is given
by A=1A I +A..
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Y
3
A,
x=b
(o)
xX=a
. A,
Y'

Fig 8.4

Example 1 Find the area enclosed by the circle x> + y?>= a2

Solution From Fig 8.5, the whole area enclosed Y

by the given circle B|(0, @)
=4 (area of the region AOBA bounded by

the curve, x-axis and the ordinates x = 0 and

x = a) [as the circle is symmetrical about both

x-axis and y-axis] X’ A4, 0)

=4 J. Oa ydx (taking vertical strips)

= 4J: a’—x dx

Yl
Since x? +y? = a®> gives y=+ \/az —x2 Fig 8.5

As the region AOBA lies in the first quadrant, y is taken as positive. Integrating, we get
the whole area enclosed by the given circle

2 a
X a . | x
=4 —\/az—x2+—sm1—
2 2 X

= 4:[§><0+a—22sin"1 1}—0} = 4( %j (gjznaz
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Alternatively, considering horizontal strips as shown in Fig 8.6, the whole area of the

region enclosed by circle Y
a a B (09 a)
= 4[0 xdy = 4j0,/a2—y2 dy  (Why?)
X
a dy
=4l Lo - 4 n 2
4{2 a’ -y’ +2 s1n a} Ny A, O)X
0
(0]
( >
=4 L—x0+ |
2
T
= 4——: T['a ’
22 Y
5 , Fig8.6

Example 2 Find the area enclosed by the ellipse x_2 + y_2:1
a

Solution From Fig 8.7, the area of the region ABA’B’A bounded by the ellipse

4 area of theregion AOBA in the first quadrant bounded
- bythe curve, x — axis and the ordinates x=0,x =a

(as the ellipse is symmetrical about both x-axis and y-axis)

4 J : ydx (taking verticalstrips)

2 2
x b

Now — +Z—2 =1gives y=% p a’—x" butasthe region AOBA lies in the first
a

quadrant, y is taken as positive. So, the required area is

:4J.— a* — x*dx

2 a
i I -x* +Zsin ‘— (Why?) b
al?2 2 0 A A
X’ o X
4 2 (- a, 0) dx (, 0)
—><0+—sm 11-0
2 2

b
T a
B,(O,_b)
4b a” ©
= —— —=Tab ’
a 2 2 Y

Fig 8.7
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Alternatively, considering horizontal strips as Y
shown in the Fig 8.8, the area of the ellipse is
B| (0, b)
b
b a B B | X
=4| xd :4—\'b— dy (Why? dy|
X* 9) X
(a0 (a, 0)
- b
daly =, b . 1y K
= — —\/b -y +—sin~ =
b2 Y 2 b, B’((0,-b)
- ) Y’
_ 2l 0+ D gin -0 Fig8.8
T b|\2 2
2
b 22

8.2.1 The area of the region bounded by a curve and a line

In this subsection, we will find the area of the region bounded by a line and a circle,
aline and a parabola, a line and an ellipse. Equations of above mentioned curves will be

in their standard forms only as the cases in other forms go beyo
textbook.

nd the scope of this

Y
Example 3 Find the area of the region bounded  x'=y T
by the curve y = x? and the line y=4. 1} N ]/3 y=4
Solution Since the given curve represented by dy X /
the equation y = x? is a parabola symmetrical
about y-axis only, therefore, from Fig 8.9, the , R
required area of the region AOBA is given by X< 0 >X
4
2.[ 0 .xdy = Y,/
Fig 8.9
5 areaof theregion BONB bounded by curve, y — axis
andthelines y=0and y=4
of 2T 4 . 3
4 -
=2 dy = 2x=| y? | =—X8=— ?
[,y iy l} SX8=7 (Why?)

Here, we have taken horizontal strips as indicated in the Fig 8.9.
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Alternatively, we may consider the vertical 2 =y Y
strips like PQ as shown in the Fig 8.10 to Q _4
obtain the area of the region AOBA. To this A N B”
end, we solve the equationsx*=y and y=4
which gives x =-2 andx = 2. x=_2 L/ x=2
Thus, the region AOBA may be stated as b
the region bounded by the curve y=x y=4  y/ y >X
and the ordinates x=-2 and x = 2. o
Therefore, the area of the region AOBA Y’

_ fzz i Fig 8.10

[ v = (y-coordinate of Q) — (y-coordinate of P) = 4 — x2]

= 2[(4-2)dc (Why?)

3 2
—2|4x-% =2[4><2—§} _32
3] 3|73

Remarlk From the above examples, it is inferred that we can consider either vertical

strips or horizontal strips for calculating the area of the region. Henceforth, we shall
consider either of these two, most preferably vertical strips.

Example 4 Find the area of the region in the first quadrant enclosed by the x-axis,
the line y = x, and the circle x* + y? = 32.

Y
Solution The given equations are N
y=Xx . (1) y=x
and X +y'= 32 .. (2 3(4 4)
Solving (1) and (2), we find that the line '
and the circle meet at B(4, 4) in the first
quadrant (Fig 8.11). Draw perpendicular A

S

BM to the x-axis. X<

Therefore, the required area = area of
the region OBMO + area of the region

0 M (4\/?,(;)

BMAB.
Now, the area of the region OBMO
= [ ydv={ "xdx 3) !
o o N
Ir , 74 .
_ 2 _ Fig 8.11
- [x ]0 =8
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Again, the area of the region BMAB

- L“‘Eydx: j:‘E\/sz— ¥ dx

1 1 x TP
= [—x-\/32—x2 +—x32xsin }
2 2 42 |,
1 1 L 4 1 1
— | =42 x0+=x32xsin'1 | -] =32-16 + —x 32 x sin”' —=
2 2 2 2 V2
=8n-(8+4m)=4n-8 o (4)
Adding (3) and (4), we get, the required area = 4.

2 2

X
Example 5 Find the area bounded by the ellipse ?+Z—2=1 and the ordinates x = 0

and x = ae, where, b? =a?> (1 —e?) and e < 1.

Solution The required area (Fig 8.12) of the region BOB’RFSB is enclosed by the
ellipse and the lines x = 0 and x = ae. %

Note that the area of the region BOB'RFSB

zjgeydx = 2%!? a* — x*dx

/
B
2b| x a’ x| o
—|=Ja* —x*+—sin ' =
al?2 2 ay =
2b
—[ae\laz —a’e? +a2sin’1e} A
2a Y
Fig 8.12
ab[e'\ll — e +sin” e}

|[EXERCISE 8.1|

1. Find the area of the region bounded by the curve y» = x and the lines x = 1,
x =4 and the x-axis in the first quadrant.

2. Find the area of the region bounded by y* = 9x, x = 2, x = 4 and the x-axis in the
first quadrant.
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Find the area of the region bounded by x> = 4y, y =2, y =4 and the y-axis in the
first quadrant.

2 2
Find the area of the region bounded by the ellipse f—6 +%=1 .

2 2
Find the area of the region bounded by the ellipse XT +? =l.

Find the area of the region in the first quadrant enclosed by x-axis, line x = NE) y
and the circle x>+ y* = 4.

Find the area of the smaller part of the circle x*> + y* = a* cut off by the line x= 7‘% .
The area between x = y? and x = 4 is divided into two equal parts by the line
x = a, find the value of a.

Find the area of the region bounded by the parabola y = ¥and y = |4].

Find the area bounded by the curve x> = 4y and the linex = 4y — 2.
Find the area of the region bounded by the curve y* = 4x and the line x = 3.

Choose the correct answer in the following Exercises 12 and 13.

12.

13.

Area lying in the first quadrant and bounded by the circle x* + y* = 4 and the lines
x=0andx=21is

A B T C T D T
P Z Z Z
(A) (B) > © 3 (D) 1
Area of the region bounded by the curve y> = 4x, y-axis and the line y= 3 is

9 9 9
(A) 2 B) 3 © 3 (D)

8.3 Area between Two Curves

Intuitively, true in the sense of Leibnitz, integration is the act of calculating the area by
cutting the region into a large number of small strips of elementary area and then
adding up these elementary areas. Suppose we are given two curves represented by
y=f(x),y= g (x), wheref(x) > g(x) in [a, b] as shown in Fig 8.13. Here the points of
intersection of these two curves are given by x = a and x = b obtained by taking
common values of y from the given equation of two curves.

For setting up a formula for the integral, it is convenient to take elementary area in

the form of vertical strips. As indicated in the Fig 8.13, elementary strip has height
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f(x) — g (x) and width dx so that the elementary area

)? y=fx)
dx

X =a y =g

Ly =f(x) - g (x)

X\O

N\

Y’ Fig 8.13

dA = [f(x) — g(x)] dx, and the total area A can be taken as

b
A= [ Fx)-g@ld
Alternatively,

A = [area bounded by y = f (x), x-axis and the lines x = a, x = b]

— [area bounded by y = g (x), x-axis and the lines x = a, x = D]

b b b
= [ f@dx=| gndx =] Tf(0-g@)]dx, where f () 2 g (x) in [a. b]

Iff(x)=g(x)in [a, c] and f (x) < g (x) in [c, b], where a < ¢ < b as shown in the
Fig 8.14, then the area of the regions bounded by curves can be written as
Total Area = Area of the region ACBDA + Area of the region BPRQB

- [ [ e-g@]ar+] [g - f()]dx

y=gx
P
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Example 6 Find the area of the region bounded by the two parabolas y =x* and y* = x.

Solution The point of intersection of these two Y ,
parabolas are O (0, 0) and A (1, 1) as shown in y=x
the Fig 8.15. x=y
Here, we can set y2 = x or y =4/x = f(x) and y = x> @D
= g (x), where, f (x) = g (x) in [0, 1].

X X

Therefore, the required area of the shaded region (o)

- [ [f@-g]ar

[ [Va-]ax =Ex%—"—3}l v

0 Fig 8.15
2 1 1

3 3 3
Example 7 Find the area lying above x-axis and included between the circle
x*+ y* = 8x and inside of the parabola y* = 4x.

Solution The given equation of the circle x> + y? = 8x can be expressed as

(x — 47 + y?> = 16. Thus, the centre of the Y

circle is (4, 0) and radius is 4. Its intersection 0

with the parabola y* = 4x gives P4
Xt +4x =8x

or X -4 =0

or x(x-4)=0

or x=0,x=4 X<5 C 4,0 IR

Thus, the points of intersection of these
two curves are O(0,0) and P(4,4) above the
X-axis.

From the Fig 8.16, the required area of

the region OPQCO included between these v
two curves above x-axis is Y

= (area of the region OCPO) + (area of the region PCQP)
4 8
= .[ 0? dhe + .f Y de

- 2jo4ﬁdx+ [ f1/42—(x—4)2dx (Why?)

Fig 8.16
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4
2| 3| ¢
= 2x§{x2:l +I 4% —1* dt, where, x—4=t (Why?)

o O

4

= % + B\Mz — + %x42 x sin”! ﬂ

0

==+

32 [4
3

2] 3

Example 8 In Fig 8.17, AOBA is the part of the ellipse 9% +
quadrant such that OA = 2 and OB = 6. Find the area between
chord AB.

4

—><O+l><42><sin11} :2+ 0+8x 2 =3—2+4n = —(8+3m)
2 2 3 3

¥ = 36 in the first
the arc AB and the

2 2

Solution Given equation of the ellipse 9x2 + y> =36 can be expressed as T + % =1or

Y
2 2
% + % =] and hence, its shape is as given in Fig 8.17. AB 0, 6)
Accordingly, the equation of the chord AB is
6-0
-0= x—2
y o2 X'e S AR
or y=-=3(x-2)
or y=—3x+6
Area of the shaded region as shown in the Fig 8.17.
2 2
= 3j0\/4—x2dx—jo 6-3x)dx (Why?) i
Y/

2 27? Fig
=3 £J4—x2+isin1£} | 6x—3C
2 27 2 2

=3 gx0+2sin_l(1):|—[l2—£} —3X2X=—6=31-6
2 2 2

8.17
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Example 9 Using integration find the area of region bounded by the triangle whose
vertices are (1, 0), (2, 2) and (3, 1). Y

Solution Let A(1, 0), B(2,2) and C(3, 1) be
the vertices of a triangle ABC (Fig 8.18).
Area of AABC

= Area of AABD + Area of trapezium
BDEC — Area of AAEC

Now equation of the sides AB, BC and X o A(1,0) D E
CA are given by

B(2,2)

. Y Fig 8.18
y=2x-1),y=4-x,y= 5 (x — 1), respectively.

2 3 3x—1
Hence, area of A ABC = .[1 2(x—1)dX+I2(4—x) dx—Ilex
X ? X ’ 1] x? i
- [7} {47}2{7}
2{[2—2—2J—(l—lﬂ+{[4x3—3—2j—(4x2—2—2ﬂ—1[{z—3j—(l—1)}
2 2 2 2 21\ 2 2

3
2
Example 10 Find the area of the region enclosed between the two circles: x* + y* =4

and (x —2)* + y* = 4.
Solution Equations of the given circles are
X*+y =4 .. (D %
and (x=22+y*=4 .. (2)
Equation (1) is a circle with centre O at the
origin and radius 2. Equation (2) is a circle with
centre C (2, 0) and radius 2. Solving equations
(1) and (2), we have
(x =2 +y =x"+)’
or X —dx+4+y" =x*+)?

or x =1 which gives y = i\/g
Thus, the points of intersection of the given

circles are A(1, /3 ) and A’(1, — /3 ) as shown in
the Fig 8.19.
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Required area of the enclosed region O ACA’O between circles
= 2 [area of the region ODCAOQ] (Why?)
= 2 [area of the region ODAO + area of the region DCAD]

el 2
=2 J.chl)c+jl ydx}
=2 j;,/4—(x—2)2dx+j12 4—x2dx} (Why?)
_1 2 1 .1 x—2 !
=2|= (x—2)«,/4—(x—2) +=X4sin" | ——
|2 2 2 Jlo
2
+ 2{1 x4 —x? +l><4sin*1 ﬁ}
2 2 24

r 1
= | r-2)fa—(x—2)? +4sin‘1(x;2ﬂO +[X\/4—x2 +4sin_lf}

2 2]

2

- (—\B +4sin”! (_?ID —4sin‘(—1)} + [4 sin”'1—/3 —4sin™’ ﬂ

= _(—\/3—4%]+4xﬂ+[4x§—\/§—4x%}

(—ﬁ—%+2nj+(2n—\/§—2?nj

=8?n_2£

|[EXERCISE 8.2 |

1. Find the area of the circle 4x* + 4y> =9 which is interior to the parabola x*= 4y.

Find the area bounded by curves (x — 1)*+ y*=1and x*+y*=1.

3. Find the area of the region bounded by the curves y =x?+2, y=x,x =0 and
x=3.

4. Using integration find the area of region bounded by the triangle whose vertices
are (— 1, 0), (1, 3) and (3, 2).

5. Using integration find the area of the triangular region whose sides have the
equations y=2x+ 1,y=3x+ 1 and x = 4.
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Choose the correct answer in the following exercises 6 and 7.

6. Smaller area enclosed by the circle x* + y* =4 and the line x + y = 2 is

(A) 2(m-2) B) -2 ©) 2n-1

7. Area lying between the curves y> = 4x and y = 2x is
(A) 2 (B) L © 2
3 3 4

Miscellaneous Examples

D) 2(x+2)

D) 3
(D) 7

Example 11 Find the area of the parabola y* = 4ax bounded by its latus rectum.

Solution From Fig 8.20, the vertex of the parabola Y

y? = 4ax is at origin (0, 0). The equation of the |

latus rectum LSL is x = a. Also, parabola is
symmetrical about the x-axis.
The required area of the region OLLO

= 2 (area of the region OLSO) .

]J

=2J.:ydx=2j.oa\@dx -0

=2x2JZj0“\/}dx

3
8Jalaz|_ 8
3 3

Example 12 Find the area of the region bounded
by the line y = 3x + 2 the x-axis and the ordinates

x=-land x=1.
C

2 2 ¢ V,
4\/ZX§|:)C2:L Y

L ’
Fig 8.20

Solution As shown in the Fig 8.21, the line X

-2
y = 3x + 2 meets x-axis atx = ? and its graph

x=-1

lies below x-axis forx e[—l, ?j and above

x-axis for x € [_3—2 s 1] .
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The required area = Area of the region ACBA + Area of the region ADEA

2

_ Jl:?(3x+ 2)d+j;(3x+2)dx
3

-2

3 3 3 .7 1 25 13
=||—+2x| |[+|—+2x| =—-4+—=—
2 L2 2 6 6 3

1

Example 13 Find the area bounded by ‘n\{
the curve y = cosx between x = 0 and
Al E
x = 2m. \
Solution From the Fig 8.22, the required «,,_ B D 2T
X<o T iw F
area = area of the region OABO + area EWT
of the region BCDB + area of the region
DEFD. %, ¢
Fig 8.22

Thus, we have the required area

3n

% > 2n
=I cosxdx+f cosxdx +I cos x dx
0 z 3
2 2
x 3n
= [sinx]? +{[sinx]? |+ [sin ]
= |sinx . smxE sin x|, Y
2 > 1
R
=1+2+1=4

Example 13 Prove that the curves y* = 4x and x> = 4y

divide the area of the square bounded by x = 0, x = 4, x<«—
. (0)

y =4 and y = 0 into three equal parts.

Solution Note that the point of intersection of the ;;'
parabolas y? = 4x and x? = 4y are (0, 0) and (4, 4) as Fig 8.23
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shown in the Fig 8.23.
Now, the area of the region OAQBO bounded by curves y*= 4x and x*= 4y.

! ) 22 ¢
=J‘OL2\E—7de:|:2X§X ——:l

12
0

32 16 16 |
=333 (D)

Again, the area of the region OPQAO bounded by the curves x> =4y, x=0,x =4
and x-axis

2
r4x 14 16
= Ojdx—a[x ]0_? (2

Similarly, the area of the region OBQRO bounded by the curve y* = 4x, y-axis,
y=0andy=4

:J‘4xdy=J.4y—zdy=i[y3]4=E - (3)

From (1), (2) and (3), it is concluded that the area of the region OAQBO = area of
the region OPQAO = area of the region OBQRO, i.e., area bounded by parabolas
y? = 4x and x?= 4y divides the area of the square in three equal parts.

Example 14 Find the area of the region )
{6, ) :0<y<x¥*+1,0<y<x+1,0<x<2}

Solution Let us first sketch the region whose area is to
be found out. This region is the intersection of the
following regions.

A ={0y):0sy<x+1}, X'<*—5
A, ={xy):0sy<x+1} ;;'
and A, ={(x,y):0=sx<2} Fig 8.24

The points of intersection of y =x? + 1 and y= x+ 1 are points P(0, 1) and Q(1, 2).
From the Fig 8.24, the required region is the shaded region OPQRSTO whose area
= area of the region OTQPO + area of the region TSRQT

1, 2
[ 4D dxt | e+ D dx (Why?)



10.

11.
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-[l5)5+)]

[ fenei]-2

Miscellaneous Exercise on Chapter 8

Find the area under the given curves and given lines:
(1) y=x% x=1,x =2 and x-axis
() y=x% x =1, x =5 and x-axis

Find the area between the curves y = x and y = x°.

Find the area of the region lying in the first quadrant and bounded by y = 4x?,
x=0,y=1and y=4.

0
Sketch the graph of y= |x+3| and evaluate I 6|x + 3|dx.

Find the area bounded by the curve y = sin x betweenx = 0 and x = 27.
Find the area enclosed between the parabola y* = 4ax and the line y = mx.

Find the area enclosed by the parabola 4y = 3x” and the line 2y = 3x + 12.

2 2

Find the area of the smaller region bounded by the ellipse %+y— =1 and the

line =+2=1.
3 2

2 2
X

Find the area of the smaller region bounded by the ellipse —2+Z—2 =1 and the
a

line =+2=1.
a b
Find the area of the region enclosed by the parabola x> =y, the line y = x + 2 and
the x-axis.
Using the method of integration find the area bounded by the curve |x|+|y|=1.

[Hint: The required region is bounded by linesx+y=1,x—y=1,—x+y=1and
-x—-y=1].
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12. Find the area bounded by curves {(x,y) : y 2x>and y = | xl}.

13. Using the method of integration find the area of the triangle ABC, coordinates of
whose vertices are A(2, 0), B (4, 5) and C (6, 3).

14. Using the method of integration find the area of the region bounded by lines:
2x+y=4,3x-2y=6andx-3y+5=0
15. Find the area of the region {(x, y) : y? < 4x, 4x> + 4y2 < 9}
Choose the correct answer in the following Exercises from 16 to 20.

16. Area bounded by the curve y = x°, the x-axis and the ordinates x=—2 and x=1 is

A) -9 B ) C b D U
(A) - B) — © 5 D)
17. The area bounded by the curve y = x | x|, x-axis and the ordinates x=— 1 and

x =11is given by

(A) 0 (B) L ©) 2 (D) 2
3 3 3
[Hint: y=x?ifx>0andy =-x*if x < 0].

18. The area of the circle x* + y* = 16 exterior to the parabola y* = 6x is

(A) %(zm—\/i) ®) %(4n+\/§> © %(Sn—\E) (D) %(8n+\l§>

o
19. The area bounded by the y-axis, y = cos x and y = sin x when 0<x SE is

A) 2642-1) B i1 © JF41 D)

Summary

@ The area of the region bounded by the curve y = f(x), x-axis and the lines
x=aand x = b (b> a) is given by the formula: Area:j bydx: j ’ f(x)dx .
@ The area of the region bounded by the curve x = ¢ (y), y-axis and the lines

d d
y = ¢, y =d is given by the formula: Area:J-C xdy :IC o0 (y)dy .
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@ The area of the region enclosed between two curves y = f (x), y = g (x) and
the lines x= a, x =b is given by the formula,

Area= "[f(x)=g(x)]dx. where, f (x) 2 g (x) in [a. b]

Q®Iff(x)2g(x)in [a, c] and f (x) £ g (x) in [c, b], a < ¢ < b, then

Alea=f:[f(X)—g(x)]dx+jf[g(x)—f(x)]dx :

Historical Note

The origin of the Integral Calculus goes back to the early period of development
of Mathematics and it is related to the method of exhaustion developed by the
mathematicians of ancient Greece. This method arose in the solution of problems
on calculating areas of plane figures, surface areas and volumes of solid bodies
etc. In this sense, the method of exhaustion can be regarded as an early method
of integration. The greatest development of method of exhaustion in the early
period was obtained in the works of Eudoxus (440 B.C.) and Archimedes
(300 B.C.)

Systematic approach to the theory of Calculus began in the 17th century.
In 1665, Newton began his work on the Calculus described by him as the theory
of fluxions and used his theory in finding the tangent and radius of curvature at
any point on a curve. Newton introduced the basic notion of inverse function
called the anti derivative (indefinite integral) or the inverse method of tangents.

During 1684-86, Leibnitz published an article in the Acta Eruditorum
which he called Calculas summatorius, since it was connected with the summation
of a number of infinitely small areas, whose sum, he indicated by the symbol .
In 1696, he followed a suggestion made by J. Bernoulli and changed this article to
Calculus integrali. This corresponded to Newton’s inverse method of tangents.

Both Newton and Leibnitz adopted quite independent lines of approach which
was radically different. However, respective theories accomplished results that
were practically identical. Leibnitz used the notion of definite integral and what is
quite certain is that he first clearly appreciated tie up between the antiderivative
and the definite integral.

Conclusively, the fundamental concepts and theory of Integral Calculus
and primarily its relationships with Differential Calculus were developed in the
work of P.de Fermat, I. Newton and G. Leibnitz at the end of 17th century.

377
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However, this justification by the concept of limit was only developed in the
works of A.L. Cauchy in the early 19th century. Lastly, it is worth mentioning the
following quotation by Lie Sophie’s:

“It may be said that the conceptions of differential quotient and integral which
in their origin certainly go back to Archimedes were introduced in Science by the
investigations of Kepler, Descartes, Cavalieri, Fermat and Wallis .... The discovery
that differentiation and integration are inverse operations belongs to Newton
and Leibnitz”.

— Y —



Chapter

(DIFFERENTIAL EQUATIONS)

+»» He who seeks for methods without having a definite problem in mind
seeks for the most part in vain. — D. HILBERT

9.1 Introduction

In Class XI and in Chapter 5 of the present book, we 1
discussed how to differentiate agiven function f with respect
toanindependent variable, i.e., how tofind f’(X) for agiven
function f at each x in its domain of definition. Further, in
the chapter on Integral Calculus, we discussed how to find
afunction f whose derivative isthe function g, which may
also beformulated asfollows:

For agiven function g, find afunction f such that

& = g(x), wherey = f(x) .. (1)
dx
An equation of the form (1) is known as a differential Henri Poincare

equation. A formal definition will be given |ater. (1854-1912)

These equationsarisein avariety of applications, may it bein Physics, Chemistry,
Biology, Anthropology, Geology, Economicsetc. Hence, anindepth study of differential
equations has assumed primeimportance in all modern scientific investigations.

In this chapter, we will study some basic conceptsrelated to differential equation,
general and particular solutions of a differential equation, formation of differential
equations, some methods to solve afirst order - first degree differential equation and
some applications of differential equationsin different areas.

9.2 Basic Concepts
We are already familiar with the equations of the type:
x*-3x+3=0 . (D
sinx+cosx=0 - (2
X+y=7 .. (3)
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Let us consider the equation:

dy
xdx+y—o .. (4
We seethat equations (1), (2) and (3) involveindependent and/or dependent variable
(variables) only but equation (4) involvesvariablesaswell asderivative of the dependent
variable y with respect to the independent variable x. Such an equation is called a

differential equation.

Ingeneral, an equation involving derivative (derivatives) of the dependent variable
with respect to independent variable (variables) is called adifferential equation.

A differential equationinvolving derivatives of the dependent variablewith respect
to only oneindependent variableis called an ordinary differential equation, e.g.,

2 3
2M + (ﬂj = 0 isanordinary differential equation . (B)
dx®  \dx

Of course, there are differential equations involving derivatives with respect to
more than one independent variables, called partial differential equations but at this
stage we shall confine ourselves to the study of ordinary differential equations only.
Now onward, we will use the term *differential equation’ for ‘ordinary differentia
equation’.

1. Weshall prefer to use the following notationsfor derivatives:
! d2 " d3 "
Y =Yy —Z =Yy —Z =¥
dx dx dx

2. For derivativesof higher order, it will beinconvenient to use so many dashes

n
assupersuffix therefore, we usethe notationy, for nth order derivative LN :

dx"

9.2.1. Order of a differential equation

Order of adifferential equation isdefined asthe order of the highest order derivative of
the dependent variable with respect to the independent variable involved in the given
differential equation.

Consider thefollowing differential equations:

dy _
vl .. (6)
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d
g a2y Y
[d—XZJ'FXZ (dTZ] =0 (8)

The equations (6), (7) and (8) involve the highest derivative of first, second and
third order respectively. Therefore, theorder of these equationsare 1, 2 and 3 respectively.

9.2.2 Degree of a differential equation

To study the degree of a differential equation, the key point is that the differential
equation must be apolynomial equationinderivatives,i.e.,y,y’,y” etc. Consider the
following differential equations:

2
d’y ,[d%) dy
— 2 — | —— =0 .. (9
o [dx2 oY ®
(sz{ﬂj—sinz y =0 (10)
dx dx
dy . dy)
—Lisn| = | =
< (dx 0 (1)

We observethat equation (9) isapolynomial equationiny”, y” andy’, equation (10)
isapolynomia equationiny’ (not apolynomial iny though). Degree of such differential
equations can be defined. But equation (11) is not a polynomial equation in y" and
degree of such adifferential equation can not be defined.

By the degree of a differential equation, when it is a polynomial equation in
derivatives, we mean the highest power (positive integral index) of the highest order
derivativeinvolved in thegiven differential equation.

Inview of the above definition, one may observethat differential equations(6), (7),

(8) and (9) each are of degree one, equation (10) is of degree two while the degree of
differential equation (11) isnot defined.

Order and degree (if defined) of a differential equation are always
positiveintegers.




382

MATHEMATICS

Example 1 Find the order and degree, if defined, of each of the following differential

equations.
o dy o d?y (dyj2 dy
——cosx=0 — 2| -y=2=0
) dx (i Y ax) Yo

(ii)

y'+y*+e’ =0

Solution

() The highest order derivative present in the differential equation is % so its

(if)

(ii)

order isone. Itisapolynomial eguationiny” and the highest power raised to %

isone, so its degreeisone.
2

Thehighest order derivative present inthe given differential equationis e so

d2
its order is two. It is a polynomial equation in dTZ and % and the highest

2

power raised to KZ isone, so its degreeis one.

The highest order derivative present in the differential equation is y”, so its

order isthree. The given differential equationisnot apolynomial equationinits
derivatives and so its degreeis not defined.

|[EXERCISE 9.1]
Determine order and degree (if defined) of differential equations given in Exercises
1to 10.
diy . (dsj4 d3s
. —+s8n(y")=0 . = =] +3s—=0
Lo (y") 2. Y +5y=0 3 g 2
2
d2yj (dyj d?y .
. |—| +cos| — |=0 . —5 =00S3X+Sn3x
4 (dx2 dx e
6. (V) + P+ ) +y=0 7y 2 +y =0
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8. y+y=¢ 9. V'+(y)?+2y=0 10. y"+2y +siny=0
11. Thedegree of the differential equation

2. \3 2
[%J +(;ﬂj +sin(%)+1:0 is
X X X

(A) 3 (B) 2 © 1 (D) not defined
12. Theorder of the differential equation
2x2d—22/—3ﬂ+ y=0is
dx dx
(A) 2 B) 1 (© 0 (D) not defined
9.3. General and Particular Solutionsof aDifferential Equation
In earlier Classes, we have solved the equations of the type:
X¥+1=0 )
sn?x—cosx=0 - (2
Solution of equations (1) and (2) are numbers, real or complex, that will satisfy the

given equation i.e., when that number is substituted for the unknown X in the given

equation, L.H.S. becomes equal to the R.H.S..
2

d-y

Now consider the differential equation vl +y=0 .. (3
X

In contrast to the first two equations, the solution of this differential equationisa
function ¢ that will satisfy iti.e., when the function ¢ is substituted for the unknown'y
(dependent variable) inthe given differential equation, L.H.S. becomesequa toR.H.S..

The curve 'y = ¢ () is called the solution curve (integral curve) of the given
differential equation. Consider the function given by

y=6¢ (X) =asin(x+b), .. (4
where @, b € R. When this function and its derivative are substituted in equation (3),
L.H.S.=R.H.S.. Soit isasolution of the differential equation (3).

Let a and b be given some particular values say a = 2 and bzg,then we get a

function y =0, = 23in(x+%j .. (5)

When this function and its derivative are substituted in equation (3) again
L.H.S. = RH.S.. Therefore ¢, is also a solution of equation (3).
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Function ¢ consists of two arbitrary constants (parameters) a, b and it is called
general solution of the given differential equation. Whereas function ¢, contains no
arbitrary constants but only the particular values of the parameters a and b and hence
is called aparticular solution of the given differential equation.

The solution which contains arbitrary constants is called the general solution
(primitive) of the differential equation.
Thesolution freefrom arbitrary constantsi.e., the solution obtained from the general

solution by giving particular values to the arbitrary constants is called a particular
solution of the differential equation.

Example 2 Verify that the function y = e is a solution of the differential equation

d’y  dy

—+—-6y=0

o Y

Solution Given functionis y = e *. Differentiating both sides of equation with respect
to x , we get

dy —3X
— =-3e - (1
” 1
Now, differentiating (1) with respect to x, we have
2
d—Z =9e ¥
dx
d’y dy

Substituting the values of and y in the given differential equation, we get

o dx
LHS =9e*+ (3 -6e*=9e*-9e*=0=RH.S.
Therefore, the given function isasolution of the given differential equation.

Example 3 Verify that the functiony =acosx + b sinx, where, a, be Risasolution
2

of the differential equation 9Y , g
dx

Solution Thegiven functionis
y=acosx+bsnx .. (1)
Differentiating both sides of equation (1) with respect to x, successively, we get

— = —asinx + b cosx
dx

d_zy_ a cosx —b sinx
ax®
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2

d
Substituting the values of dTZ andy inthe given differential equation, we get

LHS =(—acosx—bsinx)+(acosx+bsinx) =0=RH.S.
Therefore, the given function isasolution of the given differential equation.

|EXERCISE 9.2|

In each of the Exercises 1 to 10 verify that the given functions (explicit or implicit) isa
solution of the corresponding differential equation:

1. y=e+1 Yy’ -y =0

2. y=x+2x+C Dy —-2x-2=0

3. y=cosx+C Yy +snx=0
Xy

S AR E e 5 y=1+x2

5. y=AX XY =y(x=0)

6. y=xsinx DXy =YX P —y? (Xx#0andXx>yorx<-y)
2

7. xy=logy+C ; yzl_xy (xy#1)

8. y—cosy=X : (ysny+cosy+xy =y

9. x+ y=tanly OYY+y+1=0

10. y= a2 _x2xe (-4, a): x+y(;—di =0(y=0)

11. Thenumber of arbitrary constantsin the general solution of adifferential equation
of fourth order are:
(A) O (B) 2 € 3 (D) 4

12. Thenumber of arbitrary constantsinthe particular solution of adifferential equation
of third order are:

(A) 3 (B) 2 ©1 (D) O
9.4 Formation of a Differential Equation whose General Solution isgiven
We know that the equation
X+ +2X—4y+4=0 . (1)

represents a circle having centre at (—1, 2) and radius 1 unit.
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Differentiating equation (1) with respect to x, we get

;—di:% (Y#2) .. (2

whichisadifferential equation. You will find later on [See (example 9 section 9.5.1.)]

that this equation represents the family of circles and one member of the family isthe
circlegiveninequation (1).
Let us consider the equation

X2+ y2=r2 -3

By giving different values to r, we get different members of the family e.g.

X+y? =1, x+y?=4,x2+y>=9etc. (see Fig 9.1).

Thus, equation (3) represents afamily of concentric X
circlescentered at theorigin and having different radii.

Weareinterested in finding adifferential equation
that is satisfied by each member of the family. The f

different for different members of the family. This
equationisobtained by differentiating equation (3) with
respect to x, i.e.,

differential equation must befreefromr becauser is X< %

2x+2y(;—di=0 or x+y(;—di:0 .. (4) Fig9.1

which represents the family of concentric circles given by equation (3).
Again, let us consider the equation
y=mx+c .. (5
By giving different valuesto the parameters mand c, we get different members of
thefamily, e.qg.,

y =X (m:1, C:O)

y = /3x (m= 3, c=0)

y=x+1 (m=1,c¢c=1

y=-X (m=-1, c=0)

=—_x-1 (m=-1, c=-1) etc. (seeFig 9.2).

Thus, equation (5) represents the family of straight lines, where m, ¢ are parameters.

We are now interested in finding a differential equation that is satisfied by each
member of the family. Further, the equation must be free from mand c because mand
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c are different for different members of the family. y &2
Thisis obtained by differentiating equation (5) with %
respect to x, successively we get 5 g
Q

dy d?y

&=m,and yzo .. (6) x'¢ >X

The equation (6) representsthe family of straight
linesgiven by equation (5).

Note that equations (3) and (5) are the general v’
solutions of equations (4) and (6) respectively. Fig9.2

9.4.1 Procedure to form a differential equation that will represent a given
family of curves

(@) If the given family F, of curves depends on only one parameter then it is

represented by an equation of the form
F,(xy,a=0

- (D

For example, the family of parabolas y? = ax can be represented by an equation

of theform f(x, y, a) : y> = ax.

Differentiating equation (1) with respect to X, we get an equation involving

Y.V, % anda, i.e,
gxyy,a=0

e

Therequired differential equation isthen obtained by eliminating afrom equations

(D) and (2) as
Fx,y,y)=0

e

(b) If the given family F, of curves depends on the parameters a, b (say) then it is

represented by an equation of the from
F,(x,y,a,b)=0

- (4

Differentiating equation (4) with respect to X, we get an equation involving

Y. XY, ab,i.e,
gxy.y,ab=0

. (5)

But itisnot possibleto eliminate two parametersa and b from thetwo equations
and so, we need a third equation. This equation is obtained by differentiating

equation (5), with respect to x, to obtain arelation of the form
h(xy Y.,y ab)=0

. (6)
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Therequired differential equation isthen obtained by eliminating a and b from
equations (4), (5) and (6) as
FxyY,Yy)=0 - (7

|@— Note | The order of a differential equation representing a family of curvesis

same as the number of arbitrary constants present in the equation corresponding to
the family of curves.

Example 4 Form the differential equation representing the family of curvesy = mx,
where, mis arbitrary constant.

Solution We have

y = mX .. (D)
Differentiating both sides of equation (1) with respect to x, we get
dy _
ax "

Substituting the value of min equation (1) we get Yy % X

d
or X d—i -y=0
whichisfreefrom the parameter mand hencethisistherequired differential equation.

Example 5 Form the differential equation representing the family of curves
y =asin (x + b), where a, b are arbitrary constants.

Solution We have

y=asn(x +b) - ()
Differentiating both sides of equation (1) with respect to X, successively we get
dy _
i a cos(x + b) .. (2
d_zy =—asn(x+Dh) (©)
dX2 - e
Eliminating a and b from equations (1), (2) and (3), we get
d?y
—+tYy = .. (4

whichisfreefromthearbitrary constantsa and b and hencethistherequired differential
equation.
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Example 6 Form the differential equation Y
representing the family of ellipses having foci on
x-axis and centre at the origin.

Solution Weknow that the equation of said family X<
of ellipses(see Fig 9.3) is

=S
7

X2 y2
—+5 =1 (1 Y’
a® b’ @ Fig9.3
Differentiating equation (1) with respect to x, we get 2—;( + % % =0
a X
y ﬂ)_ -
or x(dx =2 .. (2

Differentiating both sides of equation (2) with respect to x, we get

<y
y d% ax dy _ 0
X dx? NG dx
d? 2 d
or _y X ﬂ —y—y =0 (3)

dx? dx dx
whichistherequired differential equation.

Example 7 Formthedifferentia equation of thefamily Y
of circlestouching the x-axis at origin.

Solution Let C denote the family of circlestouching
x-axis at origin. Let (0, a) be the coordinates of the
centre of any member of the family (see Fig 9.4).
Therefore, equation of family Cis

X2+ (y—a)2=a® orx*+y>=2ay ) X
where, aisan arbitrary constant. Differentiating both
sides of equation (1) with respect to x,we get

dy _dy
2x ZV& =28 ax Fig 9.4
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ydy
dy _dy dx
X — =—a— =
or y ix i ora dy - (2
dx
Substituting the value of a from equation (2) in equation (1), we get
X ygi
XZ + y2 = 2y g
dx
d d
or T y?) =20y 222
dx dx
. & _ 29
dx X2 -y?

Thisistherequired differential equation of the given family of circles.

Example 8 Formthedifferential equation representing thefamily of parabolashaving
vertex at origin and axis along positive direction of x-axis.

Solution Let P denote thefamily of above said parabolas (see Fig 9.5) and let (a, 0) bethe
focusof amember of the givenfamily, whereaisan arbitrary constant. Therefore, equation
of family Pis

y? = 4ax .. (1)
Differentiating both sides of equation (1) with respect to x, we get
oy Y _a -2
dx Y
Substituting the value of 4a from equation (2) A
in equation (1), we get
y'= (Zy ;ﬂj (x) X . >X
X ° (@)
2 oy W _
or y Xy i 0
whichisthedifferential equation of thegivenfamily {f

of parabolas. Fig9.5
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|EXERCISE 9.3]

In each of the Exercises 1 to 5, form a differential equation representing the given
family of curves by eliminating arbitrary constants a and b.

1.

4.
6.

10.

11.

12.

Xy

£+B=1 2. y¥=a®-x) 3.y=ae*+be®
y = e* (a+ bx) 5. y=e(acosx+bsnx)

Form the differential equation of the family of circles touching the y-axis at
origin.

Form the differential equation of the family of parabolas having vertex at origin
and axisalong positive y-axis.

Formthe differential equation of the family of ellipseshaving foci ony-axisand
centre at origin.

Formthedifferential equation of thefamily of hyperbolashaving foci on x-axis
and centre at origin.

Form the differential equation of the family of circles having centre on y-axis
and radius 3 units.

Which of the following differential equationshasy = c, e+ c, e*asthe general
solution?

d?y d?y d?y d?y

A) —+y=0 (B) —--y=0 () —+1=0 (D) —-1=0
Which of the following differential equations hasy = x as one of its particular
solution?

d’y . dy d’y _dy
®) o g Y= ®) g oY
d’y d’y _dy
ay 0 =2 -0
©) dx? p dx v () dx? +de+xy

9.5. Methodsof Solving First Order, First DegreeDifferential Equations

In this section we shall discussthree methods of solving first order first degreedifferential
equations.

9.5.1 Differential equations with variables separable
A first order-first degree differential equation is of the form

dy _
a F(X,y) .. (D
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If F(X,y) can be expressed as a product g (x) h(y), where, g(x) is afunction of x
and h(y) is afunction of y, then the differential equation (1) is said to be of variable
separable type. The differential equation (1) then has the form

(;—di =h(y).9() - (2
If h(y) # O, separating the variables, (2) can be rewritten as
1
@ dy =g(x) dx .. (3)
Integrating both sides of (3), we get
1
J'@ dy = Jg(x) dx .. (4

Thus, (4) providesthe solutions of given differential equationintheform
H(y) =G(X) +C
1
Here, H (y) and G (X) are the anti derivatives of h(y) and g(X) respectively and

C isthe arbitrary constant.

Example 9 Find the general solution of the differential equation ;ﬂ = ;(_+1 L (Y#2)
X

Solution We have
dy x+1

o Ty . (1)
Separating the variablesin equation (1), we get
2-y)dy=(x+1) dx .. (2

Integrating both sides of equation (2), we get
[@-yydy= [(x+Ddx

2 2

y X
2y—— = —+x+C

o =273 L

or X+y?+2x—4y+2C =0

or X2+ y?+2x—4y + C =0, where C = 2C,

which isthe general solution of equation (1).
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dy 1+y

Example 10 Find the general solution of the differential equation — 1
X 1+X%°

Solution Since 1 + y? # O, therefore separating the variables, the given differentia
equation can be written as

dy _ dx
1+y? 1+ %2
Integrating both sides of equation (1), we get

- (D)

I 1+y? J. 1+ %
or tanty=tan’x + C
which isthe general solution of equation (1).

Example 11 Find the particular solution of the differential equation % = —4xy? given
X

thaty =1, when x = 0.

Solution If y # 0, the given differential equation can be written as

d
y—g =—4x dx . (D
Integrating both sides of equation (1), we get
jdy —4jxdx
y’
or h I 2x*+ C
y
or -1 2
e B

Substitutingy = 1 and x = 0 in equation (2), we get, C=-1.
Now substituting the value of Cinequation (2), we get the particular solution of the

given differential equationas y = :
2x% +1

Example 12 Find the equation of the curve passing through the point (1, 1) whose
differential equationisx dy = (2x2 + 1) dx (x # 0).
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Solution The given differential equation can be expressed as

2x% 1
= dx*
dy* ™
1
or dy = (2x+;jdx .. (D)

Integrating both sides of equation (1), we get

Idy = j(2x+%jdx

or y=x2+log|x|+C .. (2
Equation (2) representsthefamily of solution curvesof thegiven differentia equation
but we areinterested in finding the equation of a particular member of thefamily which
passes through the point (1, 1). Therefore substituting x = 1, y = 1 in equation (2), we
getC=0.
Now substituting the value of Cin equation (2) we get the equation of the required
curve asy = x% + log | x|.
Example 13 Find the equation of a curve passing through the point (-2, 3), given that

the slope of the tangent to the curve at any point (X, y) is 2—)2( :
y

Solution We know that the slope of the tangent to a curve is given by dy .

dx
dy _ 2x

Separating the variables, equation (1) can be written as

y2 dy = 2x dx .. (2
Integrating both sides of equation (2), we get

J y’dy = J 2x dx
3

or y? =x*+C .. (3

dy
* The notation — due to Leibnitz is extremely flexible and useful in many calculation and formal

X
transformations, where, we can deal with symbolsdy and dx exactly asif they were ordinary numbers. By
treating dx and dy like separate entities, we can give neater expressionsto many calculations.

Refer: Introduction to Calculus and Analysis, volume-l page 172, By Richard Courant,
Fritz John Spinger —Verlog New York.



DIFFERENTIAL EQUATIONS 395

Substituting X = -2, y = 3 in equation (3), we get C = 5.
Substituting the value of Cin equation (3), we get the equation of therequired curve as

3 1

y?:x2+5 or y=(3x?+15)3

Example 14 In abank, principal increases continuously at the rate of 5% per year. In
how many years Rs 1000 doubleitself?

Solution Let P be the principal at any timet. According to the given problem,

% = (ij x P
dt 100

b _P .
o dt 20 - @
separating the variables in equation (1), we get
dp dt
P 20 - )
Integrating both sides of equation (2), we get
t
= —+
log P >0 C,
or p=e® e~
t
or P=Ce® (where e* =C) .. (3
Now P=1000, whent=0

Substituting the values of Pand tin (3), we get C = 1000. Therefore, equation (3),
gives
t
P=1000 €®
Let t years be the time required to double the principal. Then

t
2000 =1000e2 = t=20log2

EXERCISE 9.4
For each of the differential equationsin Exercises1to 10, find the general solution:
dy 1-cosx dy >
—= 2 =,/4- —2<y<?2
L dx 1+ cosx = dx v y=<2)
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d
d—i+Y=1(Y¢1) 4. sec?xtanydx + sec?ytan x dy = 0

dy 2 2
(e+e)dy—(e—e9)dx=0 6. &=(1+X)(1+y)
ylogydx—xdy=0 8. X5ﬂ=—y5

dx

dy .o -
dx—sm X 10. etanydx+(1—€)sec?ydy=0

For each of the differential equationsin Exercises 11 to 14, find a particular solution
satisfying the given condition:

11.

12.

13.

14.

15.

16.

17.

18.

19.

(x3+x2+x+1)% =2¢+x,y=1whenx=0
d
x(xz—l)d—i/:l;y:Owhenx=2

cos(%jza (ae R);y=2whenx=0
X

dy

—=ytanx;y=1whenx=0

dx

Find the equation of acurve passing through the point (0, 0) and whose differential
equationisy =€ sinx.

dy

d—:(x+ 2) (y+2), find the solution curve
X

For the differential equation xy

passing through the point (1, —1).

Find the equation of a curve passing through the point (0, —2) given that at any
point (x, y) on the curve, the product of the slope of its tangent and y coordinate
of the point isequal to the x coordinate of the point.

At any point (x, y) of acurve, the slope of the tangent is twice the slope of the
line segment joining the point of contact to the point (—4, =3). Find the equation
of the curve given that it passes through (-2, 1).

The volume of spherical balloon being inflated changes at a constant rate. If
initialy its radius is 3 units and after 3 secondsiit is 6 units. Find the radius of
balloon after t seconds.
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20. Inabank, principal increases continuously at the rate of r% per year. Find the
value of r if Rs 100 doubleitself in 10 years (log,2 = 0.6931).

21. Inabank, principal increases continuously at the rate of 5% per year. An amount
of Rs 1000 is deposited with this bank, how much will it worth after 10 years
(e"5= 1.648).

22. Inaculture, the bacteriacount is 1,00,000. The number isincreased by 10%in 2
hours. In how many hourswill the count reach 2,00,000, if the rate of growth of
bacteriais proportional to the number present?

dy

23. Thegenera solution of the differential equation Pl e is
X
(A) ee+ev=C (B) e+e=C
C) ex+e=C (D) ex+e¥y=C
9.5.2 Homogeneous differential equations
Consider thefollowing functionsin x and y
F (% y) =y + 2y, F, (X, y) = 2x =3y,
_ y —
F,(%y) = COS(;), F, (X, y) =sinx + cosy

If wereplace x and y by Ax and Ay respectively in the above functions, for any nonzero
constant A, we get

F, (X, Ay) = A% (y* + 2xy) = A2 F (X, Y)
F, (A, Ay) = A (2x=3y) =L F, (X, y)
_ AN Y _

F, (Ax, Ay) = COS(EJ = COS(;) =2\ F (%)

F, (A, Ay) =sin Ax + cosAy # A" F,(x, y), forany ne N

Here, we observe that the functions F,, F,, F, can be written in the form
F(Ax, Ay) = A" F (X, y) but F, can not be writtenin thisform. Thisleadsto thefollowing
definition:

A function F(x, y) is said to be homogeneous function of degree n if

F(Ax, Ay) = A" F(x, y) for any nonzero constant A.

We note that in the above examples, F, F,, F, are homogeneous functions of
degree 2, 1, O respectively but F, is not ahomogeneous function.
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We also observe that

or Fx,y)=Y

FXxy) = (Z—Q

X
: ool
F(xy) = X cos(%j hs[%j

F,(x y) # X he[ j foranyne N

or F,(xy) # ynh{;],foranyne N

Therefore, afunction F (X, y) is a homogeneous function of degree n if

reon=ff) @ ()

A differential equation of the form ﬂz F (x, y) issaid to be homogenous if

dx
F(x, y) isahomogenous function of degree zero.

To solve ahomogeneous differential equation of the type

s o)

dx
We make the substitution y=V.X
Differentiating equation (2) with respect to x, we get
ﬂ = V+ Xg
adx dx

Substituting the value of (;—di from equation (3) in equation (1), we get

(D)
(2

. ()



DIFFERENTIAL EQUATIONS 399

v+ x% =g(v)
dx
or Xg =g(v) —v .. (4
dx
Separating the variablesin equation (4), we get
> & ©)
gv)-v X
Integrating both sides of equation (5), we get
dv 1
jg(v)_v = j;dx+c .. (6)
Equation (6) givesgeneral solution (primitive) of the differential equation (1) when

we replace v by X.
X

If the homogeneous differential equation is in the form g—; =F(x,Y)

where, F (X, y) is homogenous function of degree zero, then we make substitution

X_y i.e., X = vy and we proceed further to find the general solution as discussed

above by writing & F(x,y) = h(f}
dy y

Example 15 Show that the differential equation (X—Y) ;—di =X+ 2y ishomogeneous
and solveit.
Solution The given differential equation can be expressed as
ﬂ _ X+2y
dx  x-y @
X 2y
Let F(x,y) =
(*y) =~ y
2
Now F(AX, Ay) = X2 F(xy)

(xy)
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Therefore, F(x, y) isahomogenousfunction of degree zero. So, thegiven differential
equationisahomogenous differential equation.

Alternatively,
2y
o | Zx | gfy) o
dx 1=y X
X
R.H.S. of differential equation (2) isof theform g % and soitisahomogeneous

function of degree zero. Therefore, equation (1) isahomogeneousdifferential equation.
To solve it we make the substitution

y = VX .. (3)
Differentiating equation (3) with respect to, x we get
dy dv
— = V+X—
X i .. (4
L dy .
Substituting the value of y and i in equation (1) we get
dv 1+2v
V+X— =
dx 1-v
dv  1+2v
or X— = -
dx 1-v
e N vVVov o1
dx 1 v
v 1 dx
dv =
o vVov o1 X
Integrating both sides of equation (5), we get
—2V ! dv = g
v v 1 X
L2038 gec
o 2 v v 1 =-log x|+ C,
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1 2v1 3
= av — dv log|x| C
o 2 Vvl 20V 1 alx| G
or lIog|v2 v 1 3 1 ~dv  log|x| C
2 2 12 3
V — -
2 2
1 3 2 2v 1
Zlog|Vv? v 1] =.Ztan! == log| x
or > g| | 2 /3 NE gl x| C
1 1 2v 1
Zlog| v 1 Zlogx* J3tan' = C Why?
or > g[v? v 1 5 logx V3 7 1 (Why?)
: y
Replacmgvby;,weget
1 1y y ‘ 1 L 2y X
—logl—~ = 1| —=logx 3tan C
or > 9X2 s 5 g NE J3x 1
1Ly vy ) 1 2y +X
=log|| = +=+1|x"|=+/3tan +C
or 2 g(xz X j \/7 \/§x 1
or log|(y? + xy + x?)| = Z@tan‘l(zjgxxj +2C,
o Iog|(x2+xy+y2)|:2\/§tan‘l(x+2yj+c
3x
whichisthe general solution of the differential equation (1)
Example 16 Show that the differential equation XCOS(%]%ZyCOS(%deX is

homogeneous and solveit.

Solution The given differential equation can be written as

y

% _ yCos(ijij o

X COS(
X
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Itisadifferential equation of the form %:F(x, y) -
X

yoos{ ¥ +x
Here F(xy) = et
X cos(yj
X
Replacing x by Ax and y by Ay, we get
Al ycos(y}r X]
F(AX, Ay) = = A" [F(x, Y]

x(xcosyj
X

Thus, F(x, y) isahomogeneous function of degree zero.

Therefore, the given differential equation isahomogeneous differential equation.
To solve it we make the substitution

y = VX .. (2
Differentiating equation (2) with respect to x, we get
dy dv
— = V+ X—
o i .. (3)
. dy .
Substituting the value of y and i in equation (1), we get
dv  vcosv+1
VEX— = ——— =
dx Ccosv
dv  vcosv+1
or X— = ———-V
dx cosv
dv 1
or X— = ——
dx  cosv
dx
or cosv dv = o

1
Therefore j cosvdv = .[ ; dx
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or sinv=1log|x|+log|C]|
or sinv=log |Cx|

Replacing v by % we get

[ Y
sn| = | =
(xj log |Cx|
which isthe general solution of the differential equation (1).

X X
Example 17 Show that the differential equation 2y eydx+(y—2x eyjdyzois
homogeneous and find its particular solution, given that, x=0wheny = 1.

Solution The given differential equation can be written as

X

dx _ 2xe9—y

— = . (D)
el 2y e’
y _
Let F(x,y) = 2 < X
2ye’

x(ery —y}
—————==1°[F(x Y]

x{Zyey]

Thus, F(X, y) is a homogeneous function of degree zero. Therefore, the given
differential equation isahomogeneousdifferential equation.

To solveit, we make the substitution

Tign F(Ax, Ay) =

X = vy .. (2
Differentiating equation (2) with respect to y, we get
dx dv

— =V+ty—
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Substituting the value of x and (3—‘; in equation (1), we get

dv  2ve'-1
V+y— =
dy 2¢’
or dv _ 2ve'-1
ydy o2
av 1
o dy ~ 2¢'
or 2e' dv = —d
y
dy
or 2¢'-dv = —|—=
fao'-ov = -
or 2e¢'=—logly|+C
X
and replacing v by ; , We get
2e¥ +logly|=C - @)

Substituting x = 0and y = 1 in equation (3), we get
2e+log|ll=C=C=2
Substituting the value of C in equation (3), we get
x
2¢e’ +log|y|=2
whichisthe particular solution of the given differential equation.

Example 18 Show that the family of curves for which the slope of the tangent at any

2 2
point (x,y) onitis X+y , isgiven by x2 —y? = cx.

Solution We know that the slope of the tangent at any point on acurveis %

dy  X2+y°

Therefore, =2 =
dx 2xy
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or

= - (1)

Clearly, (1) isahomogenous differential equation. To solve it we make substitution
y = VX
Differentiating y = vx with respect to x, we get

ﬂ = V+ Xﬂ
dx dx
dv  1+V?
or V+X— =
dx 2v
: xﬂ— 1-v?
° dx  2v
2V2 av = %
1-v X
d
or 22V dv = _X
ve-1 X
2v 1
Therefore _[Vz_ldv = —I;dx
or log [v*—1]|=—log |x|+log|C,|
or log [(v—=1) (X)|=1log|C)]
or V-1)x==xC,

Replacing v by % , we get

2
y —

or (Y =x) =+ C xorx*—y*=Cx



406 MATHEMATICS

EXERCISE 9.5

Ineach of the Exercises 1 to 10, show that the given differential equationishomogeneous
and solve each of them.

,_ Xty

1. (@ +xy)dy=(+y?) dx 2. Y= »
3. X=y)dy—(x+y)dx=0 4. -y dx+2xydy=0
5. xz%=x2—2y2+xy 6. xdy—ydx=x?+y? dx
7. {xcos(z} ysin(zj}ydx:{ysin(zj—xcosej}xdy

X X X X
g Xﬂ_wxgn(ljzo 0. ydx+x|og(1)dy—2xdy=0

dx X X

10. 1eydxey1§dy0

For each of the differential equations in Exercises from 11 to 15, find the particular
solution satisfying the given condition:

11, (x+y)dy+(x-y)dx=0;y=1whenx=1

12, ¥dy+(xy+y)dx=0;y=1whenx=1

13, Xsin2¥ y & xdy Oy - whenx=1

14. —+coseC(—)=0; y=0whenx=1

15, 2xy+ y2—2x2%=0; y=2whenx=1
dx X
16. A homogeneous differential equation of the from E =h ; can be solved by

making the substitution.
(A) y=wx (B) v=yx (C) x=vy (D) x=v
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17. Whichof thefollowing isahomogeneous differential equation?
(A) Ax+6y+5dy—By+2x+4)dx=0
(B) (xy) dx—(*+y) dy=0
(C) (¢ +2y’) dx+2xydy=0
(D) ydx+ (x*—xy—y) dy=0
9.5.3 Linear differential equations
A differential equation of thefrom

d

TPy =Q

dx
where, P and Q are constants or functions of x only, is known as a first order linear
differential equation. Some examples of thefirst order linear differential equation are

dy .

—+y =

dx Yy SN X
dy (EJ _
x+ ” Yy = ¢

& (_y (_1
dx | xlogx)  x

Another form of first order linear differential equationis

dx
E+Plx =Q

1

where, P, and Q, are constants or functions of y only. Some examples of this type of
differential equation are

%er— cosy
dy

dx -2x
—_— + —_—
dy

To solvethefirst order linear differential equation of the type

d b
X Py=0Q -~ (1)

Multiply both sides of the equation by afunction of x say g (x) to get

= y2e—y

g ;—di +P.(g(¥) y=Q.9(x) - (2
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Choose g(x) in such away that R.H.S. becomes a derivative of y . g (X).

. dy d
i.e g a P.gXy= i [y.g (¥)]
or g ;—'Z +P.gX) y=9( (;—'Z +ydg (X
= P.g(x) =g' (x)
g(x)

Integrating both sides with respect to x, we get

J.de = Imdx

9(x)
or [P-dx =1log(g ()
or g(x) = e[de

On multiplying the equation (1) by g(x) = e[ v , theL.H.S. becomesthe derivative

of some function of x and y. This function g(x) = e[ P* iscaled Integrating Factor
(I.F) of thegiven differential equation.

Substituting the value of g (X) in equation (2), we get

o deﬂ Pe dey Qe P dx
dx
d Pdx
N e - Pdx
or ax Yy Qe

Integrating both sides with respect to x, we get

Pdx

yede: Qe dx

Pdx Pdx

or y=e Qe dx C

whichisthe general solution of the differential equation.
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Seps involved to solve first order linear differential equation:

d

(i) Write the given differential equation in the form X

+Py=Q where P, Q are
constants or functions of x only.

(i) Find the Integrating Factor (I.F) = ¢ P%.

(i) Writethe solution of the given differential equation as

y(F)= QxIFdx C

dx
In case, the first order linear differential equation is in the form d_y+ PX=Q,

where, P, and Q, are constants or functions of y only. Then I.F = ¢ %% and the
solution of thedifferential equationisgiven by

x. (LF) = [(Qx1.F)dy+C
Example 19 Find the general solution of the differential equation %_ Yy = COSX.-
X

Solution Given differential equation isof theform
dy

vl Py=Q,whereP=-1and Q = cosx
ldx X
Therefore I.F=¢€ €
Multiplying both sides of equation by |.F, we get
e*"ﬂ—e’xy = e*CcoSX

dx

dy (e o
or —(ye™)=e*cosx

- ve)

On integrating both sides with respect to x, we get
yex = Iefxcosxdx+C )

Let | = je‘x cosx dx

= cosx( e‘;j - _[(—si nx) (—e ) dx
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= —cosxe* —_[sin xe X dx
= —cosxe* —[sin X(—e™) - Icosx (-7 dx]

= —cosxe * +§nxe‘x—jcosx e X dx

or | =—e>Xcosx+snxe*—|
or 2l = (sin X — cos X) e*

_ (sinx—cosx)e*
- 2
Substituting the value of | in equation (1), we get

SINX—COSX ) _y
y€X=(Tje +C

or |

or y= (S|nx—zcosxj+CeX

whichisthe general solution of the given differential equation.

Example 20 Findthegenera solution of thedifferential equation X% +2y=x* (x20),

Solution Thegiven differential equationis

dy
X—+2y = x2
™ Yy =X .. (D)
Dividing both sides of equation (1) by x, we get
dy 2
_+_ =
dx X y =X

2
whichisalinear differential equation of thetype;—diJr Py=Q, where P=; and Q=x.

S 1F= Jro= emx= €9 =x[as e @ = (x)]
Therefore, solution of the given equationisgiven by
y.x=[0) () dx+C = [Xax+C

2
or y= XI+CX_2

whichisthe general solution of the given differential equation.
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Example 21 Find the general solution of the differential equation'y dx — (X + 2y?) dy = 0.
Solution The given differential equation can be written as

dx x

— =2
dy y

L , : . 1
Thisisalinear differential equation of thetype ?-‘r Px=Q,,where B =—§ and
y

1
_7dy ”
Q, = 2y. Therefore I.F= ej v _gtoay gyt 1
y

Hence, the solution of the given differential equationis

NS e (%)dy+c

y
X
or —:J(Zdy)+C
y
> 2y +C
or A A
y y
or X=2y?+ Cy

whichisageneral solution of the given differential equation.

Example 22 Find the particular solution of the differential equation

ﬂercotx =2x+ x% cot X (x # 0)
dx
given that y = 0 when x=g.

d
Solution The given equation isalinear differential equation of the type d—i +Py=Q,

where P = cot x and Q = 2x + x2 cot x. Therefore

cot x dx log sinx

l.LF=e e sinx
Hence, the solution of the differential equationisgiven by
y.sinx=J(2x+ x2 cot x) sinx dx + C
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or ysinx=J2xsinxdx + |x¢ cosx dx + C
2 2
or ysinx= sinx(zij—jcosx(ziJ dx+_|'x2 cosx dx+C
2 2
or ysinx= xzdnx—fxzcosxdx+jx2cosxdx+C
or ysinx=x?sinx+C .. (D)

Substituting y = 0 and X=g in equation (1), we get

2
0= (Ej gn(ﬁ)w
2 2
4
Substituting the value of Cin equation (1), we get

2
. . T
ysinx= xzsmx—7

or C=

2

or y= X - (sinx = 0)

4sinx
whichisthe particular solution of the given differential equation.

Example 23 Find the equation of a curve passing through the point (0, 1). If the slope
of the tangent to the curve at any point (X, y) is equal to the sum of the x coordinate
(abscissa) and the product of the x coordinate and y coordinate (ordinate) of that point.

Solution We know that the slope of the tangent to the curveis & .

dx
dy _
Therefore, i X + Xy
&
or oYX - (D
dy

Thisisalinear differential equation of thetype —+Py=Q , whereP=—xand Q=x.

dx

X2

Therefore, | F=ed *®-e2



DIFFERENTIAL EQUATIONS 413

Hence, the solution of equation isgiven by

—X X

y-eTz = j(x)(e_zz)dx+C .. (2)

Let 1= e%dx

2
Let %zt,then—xdxzdtorxdxz—dt.

Therefore, | =—[ddt=—¢ =—¢ 2
Substituting the value of | in equation (2), we get
- X2
y e 2 = eT + C
or y=-1+Ce2 . (3)

Now (3) represents the equation of family of curves. But we are interested in
finding aparticular member of the family passing through (0, 1). Substituting x=0and
y = 1inequation (3) we get

1=-1+C.€& or C=2
Substituting the value of Cin equation (3), we get

XZ

y=-1+2e?
which isthe equation of the required curve.
EXERCISE 9.6|
For each of the differential equationsgivenin Exercises 1to 12, find the general solution:
dy : dy -2x dy y_.»
—+2y=8nx —+3y=¢€ —+==X
= dx Y = dx Y 3 dx X
4. ﬂ+(secx)y=tanx(0§x<£) 5. coszxﬂ+y:tanx (O£x<£)
dx 2 dx 2
6. xﬂ+2y=leogx 7. xlogxﬂer:glogx
dx dx X

8. (1+x3dy+ 2xydx=cotxdx (x=0)
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dy

—+y-x+xycotx=0 (x=0) 10. (x+y)ﬂ=1
dx dx

9. X

11. ydx+ (x—y3) dy=0 12. (X+3y2);—d§=y (y>0).

For each of the differential equations given in Exercises 13 to 15, find a particular
solution satisfying the given condition:

13. %+2ytanx=sinx;y:0 when x=g

d 1
14. (1+ xz)d—i+2xy=m; y=0 when x=1

15. Q—Sycotx=sin2x; y=2 when x="
dx 2

16. Findtheequation of acurve passing through the origin given that the slope of the
tangent to the curve at any point (x, y) is equal to the sum of the coordinates of
the point.

17. Findtheequation of acurve passing through the point (O, 2) given that the sum of
the coordinates of any point on the curve exceeds the magnitude of the slope of
the tangent to the curve at that point by 5.

d
18. The Integrating Factor of the differential equation Xd—i— y=2%"is
1

(A) e (B) e © % (D) x
19. TheIntegrating Factor of the differential equation

- yz)%wx =ay(1y Dis

dy
1

1 1 1
(A) y2 1 (B) /yZ -1 (C) 1— y2 (D) /1_ y2

Miscellaneous Examples

Example 24 Verify that the functiony = ¢, €* cosbx + ¢, € sin bx, wherec,, c, are
arbitrary constantsis asolution of the differential equation

dzy dy 2 2
——-2a—+\a"+b°)y=0
o ( )y
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Solution Thegiven functionis
y = €*[c, cosbx + c, sinbx] - Q)
Differentiating both sides of equation (1) with respect to x, we get

;—di = €™ —bc;sinbx bc,cosbx ¢ cosbx c,sinbx e a

o ;_di = e*[(bc, +ac,)coshbx + (ac, —bc))sinbx] - (2

Differentiating both sides of equation (2) with respect to x, we get
2

d
ngeax[(bc2 ac)( bsinbx) (ac, bc) (bcosbx)]

+ [(bc, +ac,) cosbx+ (ac, —bc) sinbx] e™.a
= e™[(a’c, — 2abc, —b®c,) sinbx + (a® ¢, + 2abc, —b?c;) cosbx]
2

d°y dy

3 dx and y in the given differential equation, we get

Substituting the values of

LH.S

e*[a’c, — 2abc, —b?c,) sinbx+ (a’c, + 2abc, —b?c,) cosbx]

2ae™[(bc, ac)cosbx (ac, bc)sinbx]

2

(@®> b?*)e™[c,cosbx c,sinbx]

x (a2C2 —2abg, —b®c, - 2a’c, + 2abg, +a’c, +b2c2)sinbx
e
+(@®c, +2abc, —b?c, — 2abc, — 2a’c, +a’c, +b’c, ) cosbx

= e*[0xsinbx+0cosbx] =€*x0=0 =R.H.S.
Hence, the given function isasolution of the given differential equation.

Example 25 Form the differential equation of the family of circles in the second
guadrant and touching the coordinate axes.

Solution Let C denote the family of circles in the second quadrant and touching the
coordinate axes. Let (—a, a) be the coordinate of the centre of any member of
thisfamily (seeFig 9.6).
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Equation representing thefamily Cis

x+a2+(y-a2=a (1) X
or xX+y*+2ax—2ay+a’=0 .. (2)
Differentiating equation (2) with respect to x, we get (-a, a)
2X+ 2yﬂ+2a—2aﬂ =0 X' ) >X
dx dx
o = o)
X+y— =al—-1
o de dx v
! Y’
or a= XTyy Fig9.6
y-1
Substituting the value of ain equation (1), we get
x+yy x+yy T x+yy
XYY y— yy _ yy
y-1 y' -1 y' -1
or DY =x+x+yyP+yy -y-x-yyP=[x+yy]
or (X+yPy?+[x+yP?=[x+yy]
or x+y)?[y)?+1 =[x+yy]?
whichisthe differential equation representing the given family of circles.

Example 26 Find the particular solution of the differential equation log (;ﬂ) =3x+4y
X

giventhat y = 0when x = 0.

Solution The given differential equation can be written as

= g3+ 4)

gle gle

or =ex. eV . (D)
Separating the variables, we get

ﬂ—e?»( dX

eV

Therefore J. e Ydy= J. e*dx



DIFFERENTIAL EQUATIONS

or = +C
3

or 4e*+3e¥+12C=0
Substitutingx=0and y = 0in (2), we get

4+3+12C=00orC=—
3 or 12

Substituting the value of Cin equation (2), we get
4e>* + 3e¥-7=0,
whichisaparticular solution of the given differential equation.

Example 27 Solve the differential equation

(xdy—ydx)ysn (%) = (y dx + x dy) x cos (%)

Solution The given differential equation can be written as
{x ysin(zj - cos(zﬂ dy = [xycos(zj +y°s n(zﬂ dx
X X X X
dy xycos(i) +y?sin (ij

or d_ =
X xysin(y) - X cos(yj
X X

Dividing numerator and denominator on RHS by X2, we get
2
y y Y lgnl Y
=cos| > [+| 25 |sn| =
d _ x (Xj (XZJ (x)

ox ysin(yj - cos(yj
X X X

dy

Clearly, equation (1) isahomogeneous differential equation of theform —==

dx

To solveit, we make the substitution
y = VX

or —— = V4+ X—
ax

417

-2

- (D

3]

-2
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dv  Veosv+visinv

or VX = T dnv— cosv (using (1) and (2))
dv 2v cosv
or X—=———————
dx vsinv-cosv
(vsinv—cosvj 2 dx
or — |dv=—
VCOSV
vsinv —cosv 1
Therefore J.(—] dv =2 I —dx
VoSV X
1 1
tanvdv—| =dv = 2| —dx
or ] Jyav=2]%
or loglsecvi —log|v| = 2log|x|+log|C, |
log > | =log|C
or 2| = loglCl
or Y . C 3
VX2 - - 1 e
. y . .
Replacing v by > n equation (3), we get
=(})
y—x =Cwhere, C=+C,
(Yo
X
or sec(%) =Cxy
whichisthe general solution of the given differential equation.
Example 28 Solve the differential equation
(tanly —x) dy = (1 + y?) dx.
Solution The given differential equation can be written as
dx X tanly
= . (1)

—_ J’_ =
dy 1+y?  1+y?
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Now (1) isalinear differential equation of the form %+ R x=Q,

-1

tany
where, P = and O, = .
17 14y? Q=1 y2
_ j—l dy
Therefore, I.F= gy _ ganty

Thus, the solution of the given differential equationis

tan_ly tant
ety = J[WJem Ydy+C (2

tan™ o
Let | = j(fz—y)zlj e™ Vdy

1
Substituting tan y = t so that (1 ¥ jdy =dt, we get
+

|=[tddt=te-[1.ed=te-e=¢€ (-1

or | = gy (taly —1)
Substituting the value of | in equation (2), we get

X. €@ = Y(tanly-1)+C

or x= (tany-1)+Ce®™"

whichisthe general solution of the given differential equation.

Miscellaneous Exercise on Chapter 9

1. For each of the differential equations given below, indicate its order and degree

(if defined).
d?y (dyjz ) [dy)g (dsz .
—= 4+5x| = | —6y=I = | 4| = 7y =
@) dx2+ X ™ y=logx (i) I ™ +7y=snx

4 3
iy &Y dn(ujzo

¢ dx®
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2. For each of the exercises given bel ow, verify that the given function (implicit or
explicit) isasolution of the corresponding differential equation.

d’y _dy

(I) yzaex+b€X+X2 : XFJrZ&—nyrXZ—Z:O
d’y _dy
— . L PN AP
(i) y=e“(acosx+bsinx) : o CIX+ y
d?y
(iii) y=xsin3x ; ?+9y—6cos3x=0
d
(V) =2 logy ) =0

3. Form the differential equation representing the family of curves given by
(x—a)? + 2y? = a% where ais an arbitrary constant.

4. Provethat X2 —y? = ¢ (X2 + y?)? is the general solution of differential equation
(@ — 3x y?) dx = (y® — 3x%) dy, where c is a parameter.

5. Formthedifferential equation of thefamily of circlesin thefirst quadrant which
touch the coordinate axes.

. . . . Cdy  [1-y?
6. Findthegenera solution of the differential equation &+ 152 =0,

. . . _dy  yP+y+l
7. Show that the general solution of thedifferential equation —— +—5———=0is
dx x“+x+1

givenby (x +y+1) = A (1 - x-y—2xy), where A is parameter.

8. Findtheequation of the curve passing through the point (0, %) whosedifferentia

equationissin x cosy dx + cosx siny dy = 0.
9. Findthe particular solution of the differential equation
1+e¥)dy+ (1+y?) e dx=0,giventhat y =1 whenx=0.

10. Solvethedifferential equation yeydxz(x e+ yz)dy(y;tO) :

11. Findaparticular solution of the differential equation (x—y) (dx + dy) = dx—dy,
giventhat y = -1, when x = 0. (Hint: put x —y =)



12.

13.

14.

15.

16.

17.

18.
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—=1(x#0).
dy (x=0)

g2V y}dx
Ix o Ux

Solvethedifferential equation {

Find a particular solution of the differential equation %Jr YCOt X = 4x cosec X

. T

(x# 0), given that y = 0 when X=§-
. . . . . . dy .

Find aparticular solution of thedifferential equation (x + 1) v 2eY-1, given

that y = 0 when x = 0.

The population of avillageincreases continuously at the rate proportional to the
number of itsinhabitants present at any time. If the population of thevillagewas
20, 000 in 1999 and 25000 in the year 2004, what will be the population of the
villagein 20097

The general solution of the differential equation ydx=xdy =0is

(A) xy=C (B) x=Cy? (C) y=0Cx (D) y=0Cx

. ' . . dx )
The general solution of adifferential equation of the type d_y+ Fx=Q is
) ye*¥ = [(Qel*®)dy+c
(B) y.e[adxz.[(Qlemdx)dx+C
© x&?¥=[(e"?¥)ay+c

(D) xejpldxzf(Ql F’1dx)dx+C

The general solution of the differential equation e*dy + (y e+ 2x) dx=0is
(A) xeg+x2=C (B) xeg+y2=C

(C) yee+x2=C (D) ye+x*=C
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Summary
An equation involving derivatives of the dependent variable with respect to
independent variable (variables) isknown as adifferential equation.

Order of adifferential equation is the order of the highest order derivative
occurring inthedifferential equation.

Degree of adifferential equationisdefinedif itisapolynomial equationinits
derivatives.

Degree (when defined) of adifferential equation isthe highest power (positive
integer only) of the highest order derivativeinit.

A function which satisfiesthe given differential equationiscalled itssolution.
The solution which contains as many arbitrary constants as the order of the
differential equation is called a general solution and the solution free from
arbitrary constantsiscalled particular solution.

To form a differential equation from a given function we differentiate the
function successively as many times as the number of arbitrary constantsin
the given function and then eliminate the arbitrary constants.

Variable separable method i s used to solve such an equation in which variables
can be separated completely i.e. terms containing y should remain with dy
and terms containing x should remain with dx.

A differential equation which can be expressed in the form

% f(xy) or :—; g(x, y) where, f (x, y) and g(x, y) are homogenous

functions of degree zero is called ahomogeneous differential equation.
A differential equation of theform % +Py Q,wherePandQare constants
X

or functions of x only iscalled afirst order linear differential equation.

Historical Note

One of the principal languages of Science is that of differential equations.

Interestingly, the date of birth of differential equationsistaken to be November,
11,1675, when Gottfried Wilthelm Freiherr Leibnitz (1646 - 1716) first put in black

and whitetheidentity I ydy= % y? , thereby introducing both the symbol sfanddy.
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L eibnitz was actually interested in the problem of finding acurve whosetangents
were prescribed. Thisled him to discover the ‘ method of separation of variables

1691. A year later he formulated the ‘method of solving the homogeneous
differential equations of the first order’. He went further in a very short time
to the discovery of the ‘method of solving a linear differential equation of the
first-order’. How surprising isit that all these methods came from a single man
and that too within 25 years of the birth of differential equations!

In the old days, what we now call the ‘solution’ of a differential equation,
was used to be referred to as ‘integral’ of the differential equation, the word
being coined by James Bernoulli (1654 - 1705) in 1690. The word ‘ solution was
first used by Joseph Louis Lagrange (1736 - 1813) in 1774, which was almost
hundred yearssincethebirth of differential equations. It was Jules Henri Poincare
(1854 - 1912) who strongly advocated the use of theword * solution’” and thusthe
word ‘solution’ hasfound its deserved place in modern terminology. The name of
the ‘method of separation of variables' is due to John Bernoulli (1667 - 1748),
ayounger brother of James Bernoulli.

Application to geometric problems were also considered. It was again John
Bernoulli whofirst brought into light theintricate nature of differential equations.
In a letter to Leibnitz, dated May 20, 1715, he revealed the solutions of the
differential equation

Xy’ =2y,

which led to three types of curves, viz., parabolas, hyperbolas and a class of
cubic curves. This shows how varied the solutions of such innocent looking
differential equation can be. From the second half of the twentieth century attention
has been drawn to the investigation of this complicated nature of the solutions of
differential equations, under the heading ‘qualitative analysis of differential
equations' . Now-a-days, this has acquired prime importance being absolutely
necessary in almost all investigations.

—_— e —



Chapter 10
(VECTOR ALGEBRA)

+«* In most sciences one generation tears down what another has built and what
one has established another undoes. In Mathematics alone each generation
builds a new story to the old structure. — HERMAN HANKEL ¢

10.1 Introduction

In our day to day life, we come across many queries such sl il il i it er
as—What isyour height? How should afootball player hit
theball to giveapassto another player of histeam? Observe
that apossible answer to thefirst query may be 1.6 meters,
aquantity that involves only one value (magnitude) which
is a real number. Such quantities are called scalars.
However, an answer to the second query isaquantity (called
force) which involves muscular strength (magnitude) and
direction (in which another player is positioned). Such
guantities are called vectors. In mathematics, physics and
engineering, we frequently come acrosswith both types of
guantities, namely, scalar quantities such as length, mass,
time, distance, speed, area, volume, temperature, work,
money, voltage, density, resistance etc. and vector quantitieslike displacement, vel ocity,
acceleration, force, weight, momentum, electric field intensity etc.

D e P

W.R. Hamilton
(1805-1865)

In this chapter, we will study some of the basic concepts about vectors, various
operations on vectors, and their algebraic and geometric properties. These two type of
properties, when considered together give afull realisation to the concept of vectors,
and lead to their vital applicability in various areas as mentioned above.

10.2 Some Basic Concepts

Let ‘I’ beany straight linein plane or three dimensional space. Thisline can be given
two directions by means of arrowheads. A line with one of these directions prescribed
iscaled adirected line (Fig 10.1 (i), (ii)).
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B
A
A

(1)) (i) (iiii)
Fig 10.1

Now observethat if werestrict thelinel to theline segment AB, then amagnitude
is prescribed on the line | with one of the two directions, so that we obtain a directed
line segment (Fig 10.1(iii)). Thus, a directed line segment has magnitude as well as
direction.

Definition 1 A quantity that has magnitude as well as direction is called a vector.
Notice that a directed line segment is a vector (Fig 10.1(iii)), denoted as AB or
simply as &, and read as ‘vector AB’ or ‘vector 3’.
The point A from where the vector AB starts is called its initial point, and the

point B where it ends is called its terminal point. The distance between initial and
terminal pointsof avector iscalled the magnitude (or length) of the vector, denoted as

|AB |, or |d], or a. The arrow indicates the direction of the vector.

Since the length is never negative, the notation |4 | < 0 has no meaning.

Position Vector
From Class XI, recall the three dimensional right handed rectangular coordinate
system (Fig 10.2(i)). Consider a point P in space, having coordinates (X, y, z) with

respect to the origin O(0, 0, 0). Then, the vector OP having O and P asitsinitial and
terminal points, respectively, is called the position vector of the point P with respect

to O. Using distance formula (from Class X 1), the magnitude of Op (or 7 ) isgiven by

|OP| = (X*+y?+7°
In practice, the position vectors of pointsA, B, C, etc., with respect to the origin O
aredenoted by &, b, €, etc., respectively (Fig 10.2 (ii)).
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z zZ
2 B
P(x,3,2) 7 P
> 27
0(0,0,0) Y 0 Y
X @ X (i)
Fig 10.2

Direction Cosines

Consider the position vector OP orf of apoint P(x,y, 2 asinFig 10.3. Theanglesa.,
B, Y made by the vector 7 with the positive directions of x, y and z-axes respectively,
are called its direction angles. The cosine values of these angles, i.e., cosa, cosp and
cosy are called direction cosines of the vector 1, and usually denoted by I, mand n,
respectively. Z

[+ Y- Q).
P d.~~..
: ¢ >
' r L’
: o) .- Jy
L ox T
AL .
X
Fig 10.3 =X

From Fig 10.3, one may note that the triangle OAP isright angled, and in it, we
have cosa _X (r stands for |F|) . Similarly, from the right angled triangles OBP and
r

OCP, wemay write cos = Y and cosy = z, Thus, the coordinates of the point Pmay

r r
also beexpressed as(Ir, mr,nr). Thenumberslr, mr and nr, proportional to thedirection
cosinesarecalled asdirection ratios of vector 7, and denoted asa, b and c, respectively.
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One may note that |12 + n? + n? = 1 but @ + b? + ¢ # 1, in general.,

10.3 Typesof Vectors

Zero Vector A vector whose initial and terminal points coincide, is caled a zero
vector (or null vector), and denoted as 0. Zero vector can not be assigned a definite
direction asit has zero magnitude. Or, alternatively otherwise, it may be regarded as
having any direction. The vectors AA, BB represent the zero vector,

Unit Vector A vector whose magnitudeisunity (i.e., 1 unit) iscalled aunit vector. The
unit vector in the direction of agiven vector a isdenoted by a.

Cainitial Vector sTwo or more vectors having the sameinitial point are called coinitial
vectors.

Coallinear Vectors Two or more vectors are said to be collinear if they are parallel to
the sameline, irrespective of their magnitudes and directions.

Equal Vectors Two vectors 3 and b are said to be equal, if they have the same
magnitude and direction regardless of the positions of their initial points, and written
asa=bh.

Negative of a Vector A vector whose magnitude is the same as that of a given vector
(say, AB), but direction isoppositeto that of it, is called negative of the given vector.

For example, vector BA is negative of the vector AB, and written as BA = — AB .

Remark The vectors defined above are such that any of them may be subject to its
paralel displacement without changing its magnitude and direction. Such vectors are
called free vectors. Throughout this chapter, we will be dealing with free vectors only.

N

Example 1 Represent graphically a displacement
of 40 km, 30° west of south. W< O sk

Solution The vector Op represents the required Scale

displacement (Fig 10.4). — 309
10 km
Example 2 Classify the following measures as
scalars and vectors.
(i) 5 seconds

(i) 1000 cn? P S
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(iii) 10 Newton (iv) 30km/hr (v) 10g/cm?
(vi) 20 m/stowards north
Solution
() Time-scalar (i) Volume-scalar (iii) Force-vector
(iv) Speed-scalar (v) Density-scalar (vi) Velocity-vector

Example 3 In Fig 10.5, which of the vectors are:

(i) Coallinear (i) Equa (i) Coinitid
Solution
(i) Collinear vectors: &, ¢ and d .
Scale
(i) Equal vectors: d and ¢. —
1 unit

(iii) Coinitial vectors: b, ¢ and d.

Fig 10.5

| EXERCISE 10.1]

1. Represent graphically adisplacement of 40 km, 30° east of north.
Classify the following measures as scalars and vectors.

() 10kg (i) 2 meters north-west  (iii) 40°
(iv) 40 watt (v) 10*° coulomb (vi) 20 m/&
3. Classify thefollowing as scalar and vector quantities.
() timeperiod (i) distance (iiiy force
(iv) veocity (v) work done r
4. InFig10.6 (asquare), identify thefollowing vectors.
(i) Coinitid (i) Equa
(iii) Collinear but not equal 7 7
5. Answer the following as true or false.
(i) aand —a arecollinear.
(i) Two collinear vectors are always equal in 2z
magnitude. Fig 10.6

(ifi) Two vectors having same magnitude are collinear.
(iv) Two collinear vectors having the same magnitude are equal .
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10.4 Addition of Vectors C

A vector AB simply means the displacement from a
point A to the point B. Now consider a situation that a
girl moves from A to B and then from B to C
(Fig 10.7). The net displacement made by the girl from A

point A to the point C, is given by the vector AC and Fig 10.7
expressed as
AC = AB+BC
This is known as the triangle law of vector addition.

In general, if we have two vectors d and b (Fig 10.8 (i)), then to add them, they
are positioned so that the initial point of one coincides with the terminal point of the
other (Fig 10.8(ii)).

C
\,? ¢
Z\) S
) 9 %
% \b b
. @
A = B A B

o) (i) i) %
Fig 10.8

For example, in Fig 10.8 (i), we have shifted vector b without changing itsmagnitude
and direction, sothat it'sinitial point coincideswith theterminal point of 3. Then, the

vector @+ b, represented by the third side AC of the triangle ABC, gives us the sum
(or resultant) of the vectors @ and bi.e., intriangle ABC (Fig 10.8 (ii)), we have
AB+BC = AC
Now again, since AC=-CA , from the above equation, we have
AB+BC+CA = AA=0

This means that when the sides of a triangle are taken in order, it leads to zero
resultant astheinitial and terminal pointsget coincided (Fig 10.8(iii)).
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Now, construct avector BC' so that its magnitude is same as the vector BC, but
the direction oppositeto that of it (Fig 10.8 (iii)), i.e.,

BC' = -BC
Then, on applying trianglelaw from the Fig 10.8 (iii), we have
AC —AB+BC = AB+(-BC) =a-b

The vector AC' is said to represent the difference of 3 and b .

Now, consider aboat in ariver going from one bank of the river to the other in a
direction perpendicular to the flow of theriver. Then, it is acted upon by two velocity
vectors-one is the velocity imparted to the boat by its engine and other one is the
velocity of the flow of river water. Under the simultaneous influence of these two
velocities, the boat in actual startstravelling with adifferent velocity. To haveaprecise
idea about the effective speed and direction
(i.e., theresultant vel ocity) of the boat, we have
thefollowing law of vector addition.

If wehavetwo vectors 3 and b represented

by thetwo adjacent sides of aparallelogramin
magnitude and direction (Fig 10.9), then their

sum a+b is represented in magnitude and 0

direction by the diagonal of the parallelogram a4
through their common point. Thisisknown as Fig 10.9
the parallelogram law of vector addition.

From Fig 10.9, using the triangle law, one may note that
OA+AC = OC
or OA + OB = OC (since AC=0B)

which is parallelogram law. Thus, we may say that the two laws of vector
addition are equivalent to each other.

Properties of vector addition

Property 1 For any two vectors d and b ,

a+b=b+a (Commutative property)
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Proof Consider the parallelogram ABCD e

(Fig10.10). Let AB  aandBC b, thenusing
the triangle law, from triangle ABC, we have

AC = a+b
Now, since the opposite sides of a
parallelogram are equal and parallel, from

Figl0.10, we have, AD=BC=b and Al

DC=AB=43 .Agan using triangle law, from Fig‘io,lo
triangle ADC, we have

AC = AD+DC=b+a
Hence  &a+b =b+a
Property 2 For any three vectors d,b and &
(@+b)+¢ = a+(b+c) (Associative property)

Proof Let the vectors &,b and € be represented by PQ, QR and RS, respectively,
asshownin Fig 10.11(i) and (ii).

Fig 10.11
Then a+b = PQ+QR=PR
and b+c = QR+RS=QS
So (a+b)+ ¢ = PR+RS=PS
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and a+(b+c) = PQ+QS=PS

Hence (a+b)+¢ = a+(b+¢c)
Remark The associative property of vector addition enables us to write the sum of
three vectors a ,b, © as a+b + ¢ without using brackets.
Note that for any vector 3, we have
a+0=0+a=a
Here, the zero vector 0 is called the additive identity for the vector addition.
10.5 Multiplication of aVector by a Scalar

Let & beagiven vector and A ascalar. Then the product of the vector a by the scalar
A, denoted as A @, is called the multiplication of vector a by the scalar A. Note that,
A a isalso avector, collinear to the vector a. The vector Aa has the direction same
(or opposite) to that of vector a according as the value of A is positive (or negative).
Also, the magnitude of vector A a is|A| times the magnitude of the vector &, i.e.,
|2al = |r]lal

A geometric visualisation of multiplication of a vector by a scalar is given

inFig10.12.

7 7
v %y Sy 7
’\/N ) '~
Fig 10.12

When A = -1, then Aa=-3a, which is a vector having magnitude equal to the

magnitude of @ and direction oppositeto that of the direction of a. Thevector —a is
called the negative (or additive inverse) of vector @ and we aways have

d+(-a) = (-a)+a=0

Also, if xzi,provided a 0, i.e. a isnotanull vector, then

&l

=

InapEAllal = 508l 1

Q|
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So, A @ represents the unit vector in the direction of a. We write it as

|-

a-= a

[ Note | For any scalar k, k0=0.

10.5.1 Components of a vector

Let us take the points A(L, 0, 0), B(O, 1, 0) and C(0, O, 1) on the x-axis, y-axis and
z-axis, respectively. Then, clearly

Q)

|OA|=1,|OB| = 1 and |OC|=1

Thevectors OA, OB and OC , each having magnitude 1,
are called unit vectors along the axes OX, OY and OZ,

respectively, and denoted by {,] and k, respectively b
(Fig10.13). Fig 10.13

Now, consider the position vector OP of apoint P(x, y, 2) asin Fig 10.14. Let P,
be the foot of the perpendicular from P on the plane XQOY. We, thus, see that P, Pis

Z
N

P (x.:2)

X Fig 10.14
parallel to z-axis. As i, | and Kk are the unit vectors along the x, y and z-axes,
respectively, and by the definition of the coordinates of P, we have BP=OR = z .
Similarly, QR = 0S=yj and OQ=xi -
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Therefore, it follows that OR = 0Q+QP =x +yj

and OP = OB + PP=x +Vj+ 2k
Hence, the position vector of P with reference to O is given by
OP(orf) = xi +yj + &

This form of any vector is caled its component form. Here, x, y and z are called
asthe scalar componentsof 7, and xi, yj and ZK are called the vector components
of I aong the respective axes. Sometimes X, y and z are also termed as rectangular
components.

The length of any vector 7 =xi + yj + zk , is readily determined by applying the
Pythagoras theorem twice. We note that in the right angle triangle OQP, (Fig 10.14)

0P, | = OQP+IQRFE =% +y?,
and in the right angle triangle OP P, we have

op = JIORF IRPF (¢ y?) 7
Hence, the length of any vector 7 = xi + yj + zk isgiven by
IF| = |xf+yf+ﬂ2|=\/m
If aandb are any two vectors given in the component form aif+a21°+a3I2 and
by +b,] + b,k , respectively, then
(i) the sum (or resultant) of the vectors & and b is given by
a+b = (+h)i +(a, +b,) ]+ (a + bk
(i) thedifference of the vector a and b is given by
a-b=(a - +(@~b,) ]+ (@~ bk
(i) thevectors @ and b are equal if and only if

a=b,a=b, ad a=b,
(iv) themultiplication of vector a by any scalar A isgiven by

ra=(a) (a) (a)k
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The addition of vectors and the multiplication of avector by ascalar together give

thefollowing distributive laws:

0]
(ii)
(i)

Let aandb be any two vectors, and k and m be any scalars. Then
ka+ma=(k+m)a
k(me) = (km)a

k(@ b) ki kb

Remarks

()

(i)
(iii)

One may observe that whatever be the value of A, the vector Aa is aways
collinear to the vector &. In fact, two vectors a and b arecollinear if and only
if there exists a nonzero scalar A such that b=A4. If the vectors @ and b are
given in the component form, i.e. &=ai +a,] +a;K and b =Dy +b,] + bk,
then the two vectors are collinear if and only if

bi +b,]+bk = M@l +a,] +ak)

bi +b,] +bk = ()i +(ray) ] +(hay)k
b =%a, b,=%a,, by=21a,

)

0

= - =—===

If & ai a,] ak,thena,a,a, areaso caled direction ratiosof a.
Incaseif itisgiventhat |, m, naredirection cosinesof avector, then I + mj + nk

= (cosa)i + (cosP) ] + (cosy)K isthe unit vector in the direction of that vector,

where o, B and y are the angles which the vector makes with x, y and z axes
respectively.

Example 4 Find the values of x, y and z so that the vectors a=xi +2] +zk and

6:

20 +yj +k are equal.

Solution Notethat two vectorsareequal if and only if their corresponding components

are equal. Thus, the given vectors @ and b will be equal if and only if

x=2,y=2,z=1
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Example 5 Let a=i+2] and b=2{+].Is |a|=|b|? Are the vectors & and b
equal?

Solution We have |d|=v1>+ 2> =+/5 and |[b| ~v2*2 * 5

So, |a|=|b|. But, thetwo vectorsare not equal sincetheir corresponding components
aredistinct.

Example 6 Find unit vector in the direction of vector &= 2f + 3] +k

|-

Solution The unit vector in the direction of avector 3 isgivenby a=—a.

Now lal = 22 +32+1% =14

Q)

A

1 ~ ~ ~ 2 o 3 2 1 ~
=—— (21 +3j+k) = i+ + k
Therefore a m( I +3j+k) N ml Jia

Example 7 Find a vector in the direction of vector a=i —2] that has magnitude
7 units.

Solution The unit vector in the direction of the given vector 3 is

1 3
al a= g-2h=pi-Z]

Therefore, the vector having magnitude equal to 7 and in the direction of Fis

. o\ T 14
7a = 7(i|_£ j:_|——j

a=

NN =R RNCRNG

Example 8 Find the unit vector in the direction of the sum of the vectors,
d=2+2] -5k and b=2 + ] + 3K.
Solution The sum of the given vectorsis

a b( &sy)=4 3] 2k

and |S| = 42 +3 +(-2)% =/29
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Thus, the required unit vector is

L1 4. 3. 2 -
C=—=C=—+= (4| +3]-2K) = i+ j— k
IC] 29 V29 V29 V29
Example9 Writethedirection ratio’s of thevector a =1 + j — 2k and hence calculate

itsdirection cosines.

Solution Note that the direction ratio’s a, b, ¢ of avector 7=xi + Y] + ZK are just

the respective components x, y and z of the vector. So, for the given vector, we have
a=1 b=1andc=-2 Further, if |, mand n are the direction cosines of the given
vector, then

|=i:i mzizi’ nziz__z aslf’|:\/6

7| 6’ | 6 I¥| 6
Thus, the direction cosines are (i i , —i) .
J6

10.5.2 Vector joining two points
If P.(x,,y,, z) and P(X,, y,, z,) are any two points, then the vector joining P, and P,

isthe vector PP, (Fig 10.15). Z
. . . ) 2P2 (X232, 2)
Joining the points P, and P, with the origin

O, and applying triangle law, from the triangle

OPP,, we have A '
OR +RP, = OF,. ;Rf:'.:_‘-"' Py, 1520
Using the properties of vector addition, the T 0 ; —Y
above equation becomes X
PP, = OP, - OP, Fig 10.15
e BB, = (Xd + Y, ] +2,K) = (4] + 4] +2K)

= (% —X)0 + (Y2~ Y] +(z - 2K

The magnitude of vector @ isgiven by

RP, = 06— %)%+ (Yo - Y)? + (2, - 2)°
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Example 10 Find the vector joining the points P(2, 3, 0) and Q(— 1, — 2, — 4) directed
from Pto Q.
Solution Since the vector isto be directed from P to Q, clearly Pisthe initia point
and Q isthe terminal point. So, the required vector joining P and Q isthe vector PQ,
givenby

PO = (-1-2)i +(-2-3) ]+ (-4-0)k
ie. PQ = -3 -5] -4k,
10.5.3 Section formula

Let Pand Q betwo pointsrepresented by the position vectorsOP and OQ , respectively,

with respect to the origin O. Then the line segment Q
joining the points P and Q may be divided by athird
point, say R, in two ways — internally (Fig 10.16)
and externally (Fig 10.17). Here, we intend to find

the position vector OR for the point R with respect o
to the origin O. We take the two cases one by one. >

Case | When R divides PQinternally (Fig 10.16). P
4 T Fig 10.16
If R divides PQ suchthat mRQ = nPR,

wheremand n are positive scalars, we say that the point R divides PQ internally inthe
ratio of m: n. Now from triangles ORQ and OPR, we have

RQ = OQ-OR=b-r

and PR = OR-OP=r-a;

Therefore, we have m({-F) = n({f-3a) (Why?)

or F= mb + n (onsimplification)
"7 Tmen P

Hence, the position vector of the point R which divides P and Q internally in the
ratio of m: nisgiven by
mb + na
m+n

OR =
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Case |l When R divides PQ externally (Fig 10.17).
We leave it to the reader as an exercise to verify
that the position vector of the point R which divides
the line segment PQ externally in the ratio

. m . .
m:n i.e — o isgiven by

QR

Fig 10.17

Remark If R is the midpoint of PQ , then m = n. And therefore, from Case |, the
midpoint Rof PQ, will haveitsposition vector as

a+b
2
Example 11 Consider two points P and Q with position vectors OP =33 - 2b and

OR =

OQ & b.Findthepositionvector of apoint Rwhichdividesthelinejoining Pand Q
intheratio 2:1, (i) internally, and (ii) externally.

Solution
(i) The position vector of the point R dividing the join of P and Q internally in the
ratio2:1is
. _ 2a+b)+(3a-2b) 5a
y 2+1 3
(i) The position vector of the point R dividing the join of P and Q externally inthe
ratio2:1is
SE S 2(a+b)—(3a—2b):46_51
2-1
Example 12 Show that thepoints A(2i | K), B 3] 5Kk), C(3 4] 4Kk) are

the vertices of aright angled triangle.
Solution We have
AB = (1-2)i +(-3+D]+(-5-Dk i 2] 6k
BC = (3-1)i +(-4+3)] +(-4+5k =21 — +k
and CA = (2-3)i +(-1+4) ]+ @+ 4Kk =—i +3]+5k
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Further, note that

|ABF = 41=6+35=|BC] +|CA

Hence, thetriangleisaright angled triangle.

1.

a bk~ Wb

10.
11.

12.
13.

14.
15.

| EXERCISE 10.2]

Compute the magnitude of the following vectors:

1~ 1 I 1 Q
BB
Write two different vectors having same magnitude.

Write two different vectors having same direction.

=i+]+k; b=21-7]-3k c=

Find the values of x and y so that the vectors 2i +3] and xi + yj areequal.

Find the scalar and vector components of the vector with initial point (2, 1) and
terminal point (-5, 7).

Findthesumofthevectors a=1 — 2] +K, b =-2 + 4] +5kand ¢=1 - 6] — 7K.
Find the unit vector in the direction of the vector a=1 + |+ 2K -

Find the unit vector in the direction of vector PQ, where P and Q arethe points
(1, 2,3)and (4, 5, 6), respectively.

For givenvectors, =2 — ] + 2k and b=-i + ] -k, findtheunit vector inthe
direction of the vector a+b.

Find avector inthedirection of vector 5 — j + 2k which hasmagnitude8 units.
Show that the vectors 2 —3] + 4k and - 4i + 6] —8k are collinear.

Find the direction cosines of the vector | +2] + 3k -

Find the direction cosines of the vector joining the points A (1, 2, —3) and
B(-1, -2, 1), directed from A to B.

Show that the vector | + j +k isequally inclined to the axes OX, OY and OZ.
Find the position vector of apoint R which dividesthelinejoining two points P
and Q whose position vectorsare | + 2] —K and—i + | + k respectively, inthe
ratio2:1

() internally (i) externaly
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16. Findtheposition vector of themid point of the vector joining the points P(2, 3, 4)
and Q(4, 1, -2).

17. Show that the points A, B and C with position vectors, azsf_4j_4|2,

b=2{ - j+k and & =i — 3] — 5k , respectively form the vertices of aright angled
triangle.
18. Intriangle ABC (Fig 10.18), which of thefollowing isnot true:

(A) AB+BC+CA=0 &
(B) AB+BC-AC=0

(D) AB-CB+CA=0 Fig 10.18
19. If aand b aretwo collinear vectors, then which of the following are incorrect:

(A) b=24, for somescaar A
(B) a=+b
(C) the respective componentsof 5 and b are not proportional

(D) both the vectors d and b have same direction, but different magnitudes.

10.6 Product of Two Vectors

So far we have studied about addition and subtraction of vectors. An other algebraic
operation which we intend to discuss regarding vectorsis their product. We may
recall that product of two numbersisanumber, product of two matricesisagain a
matrix. But in case of functions, we may multiply them in two ways, namely,
multiplication of two functions pointwise and composition of two functions. Similarly,
multiplication of two vectorsis also defined in two ways, namely, scalar (or dot)
product where the result is a scalar, and vector (or cross) product where the
result is a vector. Based upon these two types of products for vectors, they have
found various applicationsin geometry, mechanics and engineering. In this section,
we will discuss these two types of products.

10.6.1 Scalar (or dot) product of two vectors
Definition 2 The scalar product of two nonzero vectors 3 and b , denoted by 3-b, is
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defined as a-b = |a||b]|coso, A
where, 6 is the angle between d and b, 0 (Fig 10.19). o -
. . ) . . . a
If either =0 or b =0, then 6 is not defined, and in this case, Fig 10.19

wedefineda b 0
Observations

1. F.b isarea number.

2. Let dand b be two nonzero vectors, then a-b =0 if andonly if 2and b are
perpendicular to each other. i.e.

da-b=0c alb
3. 1f6=0,then a-b=|d||b]|

In particular, a-a=|af?, as6 inthiscaseisO.
4. If@=m,then a-b=-|a||b]|

Inparticular, & ( 8) |4, as0inthiscaseism.
5. Inview of the Observations 2 and 3, for mutually perpendicular unit vectors

i, ] and k, we have

_.)

W>
W)

Ii=]-]=k-k=1
=] 0

._.)
X) —
>
—

~

6. The angle between two nonzero vectors 3 and b is given by

ab _1( ab J
cos ——, 0r @ =Cos~ | ——
|allb] lallb]
7. Thescalar product iscommutative. i.e.
a-b=b-a (Why?)
Two important properties of scalar product

Property 1 (Distributivity of scalar product over addition) Let &, b and € be
any three vectors, then

a-(b+c)=4ab +a-c
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Property 2 Let @andb be any two vectors, and A be any scalar. Then
(a)b=(ab (ab) a(hb)

If two vectors aandb are given in component form as a1f+a2f+a3I2 and
byi +b,] +b;k , then their scalar product is given as

ab = (aj +a,) +a5k)-(bi +b, ] +byk)
A - (B + 0, ] + D) + 3, - (B + b, ] + DiK) +agk- (B +, ] +bk)
aby (1) + ab, (- 1) +aby (- k) +aby (1) + ahy (- )+ ahy(f-K)
+ aghy (K- 1)+ agb, (K- ) +agby (K - k) (Using the above Properties 1 and 2)
ab, +ab, + ab, (Using Observation 5)
Thus a-b = ab +ab, +ah,
10.6.2 Projection of a vector on a line

Suppose a vector AB makes an angle 6 with a given directed line | (say), in the
anticlockwise direction (Fig 10.20). Then the projection of AB onlisavector P
(say) with magnitude | AB | cos6, and thedirectionof P being the same (or opposite)
to that of thelinel, depending upon whether cos6 ispositive or negative. Thevector p

B
B
;(,% . . N
o ! : O
> 7 >
AP C c 57 A
(0°< 6 < 90" (90'< 6 <180")
() (i)
-> 0 0 ->
C_ r ~ 1 r~N P C l
: A &5 E
73 N .
B B
(180°< 06 < 270" (270'< 6 < 360")
(iii) Fig 10.20 )
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iscalled the projection vector, and its magnitude | P | issimply called asthe projection

of the vector AB on the directed linel.
For example, in each of thefollowing figures (Fig 10.20(i) to (iv)), projection vector

of AB aongthelinel isvector AC.
Observations
1. If p istheunit vector alongalinel, then the projection of avector & ontheline
lisgivenby a p.
2. Projection of avector & on other vector b, isgiven by
a-b, or é-(gj , or i(a-ﬁ)
b |b]
3. If 8=0,thentheprojectionvector of AB will be AB itself andif 6 =, thenthe
projection vector of AB will be BA .
3n
2

Remark If o, B and y are the direction angles of vector a=a,i +a,] +ak , then its
direction cosines may be given as
) o

ai
= %, cos —=, and cos —
lafli| lal EY EY

T —
4, 1f 0 =5 o 0 =—, then the projection vector of AB will be zero vector.

Ccos

Also, notethat |a|cosa, |a|cosp and |a@|cosy arerespectively the projections of
a aong OX, OY and OZ. i.e., the scalar components a,, a, and a, of the vector &,
areprecisely the projectionsof a along x-axis, y-axisand z-axis, respectively. Further,
if @ isaunit vector, then it may be expressed in terms of its direction cosines as

a=cosal +Ccosp] + cosyk
Example 13 Find the angle between two vectors a and b with magnitudes 1 and 2
respectively and when a-b=1.
Solution Given a b 1,|a| land|b| 2.Wehave

Ccos

N[~
w]|
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Example 14 Find angle ‘0’ between the vectors a=1 + ] —k and b=i - ] +K.

Solution The angle 6 between two vectors a and b is given by

ab
CosH = ———=
lallb]
Now ab=(@+]-k (I-]+k=1-1-1=-1.
-1
Therefore, we have Coso = 3
: : 1 1
hence the required angleis 6 = Cos 3

Example 15 If a=5/—]-3k and b=1 +3] -5k, then show that the vectors
d+b and a—b are perpendicular.

Solution We know that two nonzero vectors are perpendicular if their scalar product
is zero.

Here a+b = (5 — ] —3K)+ (i +3]—5Kk) =61 + 2] —8K
and a-b = (5 -]-3K) —(i+3]-5K) =4 —4] + 2k
o, (@+Db)-(3-b) = (61 +2] —8K)- (4 —4] +2K)=24—-8-16=0.

Hence  a+b and a—b are perpendicular vectors.

Example 16 Find the projection of the vector =2 +3] +2k on the vector
b=i+2]+kK-
Solution The projection of vector & on the vector b isgiven by

i(é-ﬁ) B (2x1+3><2+2><1):£:§ 6
10| CJ02+@2+@? V6 3

Example 17 Find |a-b|, if two vectors aand b are such that |a| 2, |b| 3

and a-b=4.
Solution We have

‘o
o]
)
1
—~~
job]
|
o
N
~~
o8]
|
o
N

I
Q
Q
|
Q|
[on]
|
T
Q
+
(o]
o
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= |af -2a-b)+|b [
= (2*-2(4+(3?
Therefore la-b|=+/5
Example 18 If & isaunit vector and (X—4a)-(X+a)=8, thenfind | X]|.

Solution Since & isaunit vector, |a|=1. Also,
(X-a)-(x+a) =8

or %-%X+X-d-a-x-a-a=8
or |XF 1=8ie |X[2=9
Therefore | X| = 3 (as magnitude of avector is non negative).

Example 19 For any two vectors d and b , weawayshave |a-b|<|a||b| (Cauchy-
Schwartz inequality).

Solution Theinequality holdstrivialy wheneither 4=0 or b =0.Actualy,insucha
situation we have |a-b|=0=|a||b]|. So, let us assume that |a|=0=|b] .
Then, we have

|a-b|
1a|lb| = |cosO|<1
Therefore |a-b|<|a||b|
Example 20 For any two vectors 3 and b, weaways > C
have |a+b|<|a|+|b | (triangleinequality). 3 >
Solution Theinequality holdstrivially in case either A 4 B
a=0orb=0 (How?). So, let |a] O |b]. Then,
|a+B [ = (a+B)? = (a+b)-(a+b) Fig 10.21
—&d-a+a-b+b-a+b-b
= |af +2a-b+|b (scalar product is commutative)
< |af+2|a-b|+|bf (since x<|x|VxeR)
< |af +2|allb|+|bf (from Example 19)

| 1b)?

Q)

(I
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Hence |a b|<|a| |b|
Remark If the equality holdsin triangle inequality (in the above Example 20), i.e.
la+b| = |a|+|b],
then |AC| = |AB|+|BC]|
showing that the pointsA, B and C are collinear.
Example 21 Show that the points A (—2f + 3] +5k), B(1 +2] +3k) and C(7i —k)
arecollinear.
Solution We have
AB=(1 2i (2 3] 3 5k 3 | 2k,
BC=(7 Di (0 2] (1 3k 6 2] 4K,
AC=(7 2i (0 3] (1 5k 9 3j 6k
|AB| =14, IBC| 2414 and |AC| 3,14
Therefore |AC| = |AB|+|BC|
Hence the points A, B and C are collinear.

In Example 21, one may note that although AB + BC + CA =0 but the
pointsA, B and C do not form the vertices of atriangle.

|EXERCISE 10.3

1. Find the angle between two vectors & and b with magnitudes J3 and 2,
respectively having 5.p =+/6 -

Find the angle between the vectors i — Zi +3K and 3 — 2} +k

Find the projection of the vector { — | onthevector i +j.

Find the projection of the vector | + 3] + 7k onthevector 7 — j + 8k .
Show that each of the given three vectorsis a unit vector:

ok w0 DN

%(2f+3j+6|2), %(Sf—ﬁﬁ 2K), %(eh 2] -3K)

Also, show that they are mutually perpendicular to each other.
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Find |a| and |b|,if (A+b)-(a—b)=8 and|a|=8]|b].
Evaluate the product (33— 5b)- (24 + 7b) -
Find the magnitude of two vectors a and b, having the same magnitude and

such that the angle between them is 60° and their scalar product is % :

Find | X], if for aunit vector &, (X—2a)-(X+a)=12.

If a=21+2]+3k, b=—i+2]+k and =3 + ] are such that +A0 is
perpendicular to ¢, then find the value of A.

Show that |a|b+|b|a isperpendicular to |d|b-|b |4, for any two nonzero
vectors a and b .

If a-a=0 and a-b =0, then what can be concluded about the vector p ?

If &b,C are unit vectors such that a+b+¢c=0, find the value of
a-b+b-c+c-a.

If either vector 2=0 or b=0, then a-b =0. But the converse need not be

true. Justify your answer with an example.

If the vertices A, B, C of atriangle ABC are (1, 2, 3), (-1, 0, 0), (0, 1, 2),
respectively, then find ZABC. [ZABC is the angle between the vectors BA
and BC].

Show that the pointsA(1, 2, 7), B(2, 6, 3) and C(3, 10, —1) are collinear.

Show that thevectors 2f — | +k, i —3] -5k and 3f — 4] — 4k formthevertices
of aright angled triangle.

If @ isanonzero vector of magnitude‘a’ and A anonzero scalar, then A d isunit
vector if

(A) =1 (B) A=—1 (C) a=|r| (D) a=1/|\|

10.6.3 Vector (or cross) product of two vectors

In Section 10.2, we have discussed on the three dimensional right handed rectangul ar
coordinate system. In this system, when the positive x-axisisrotated counterclockwise
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into the positivey-axis, aright handed (standard) screw would advancein the direction
of the positive z-axis (Fig 10.22(i)).
In aright handed coordinate system, the thumb of the right hand points in the

direction of the positive z-axis when the fingers are curled in the direction away from
the positive x-axistoward the positive y-axis (Fig 10.22(ii)).

Z

) . s
Fig 10.22 (i), (ii)

Definition 3 The vector product of two nonzero vectors dand b , isdenotedby & b
and defined as
axb =|alb|sin0q,
A
where, 6 is the angle between dandb, 0<0<n and A is

a unit vector perpendicular to both @ and b, such that ;
d,b and A form aright handed system (Fig 10.23). i.e., the A

right handed system rotated from ztob moves in the Vv

Fig 10.23

direction of f.

If either 2=0o0rb =0, then 8 isnot defined and in thiscase, we define axb =0.
Observations

1. dxb isavector.

2. Let dandb be two nonzero vectors. Then dxb =0 if and only if 4 and b
are paralel (or collinear) to each other, i.e.,

axb = 0= dlb
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In particular, axa=0 and éx(—é)zf), since in the first situation, 6 = 0
and in the second one, 6 = i, making the value of sin6 to be 0.

If 5 thena b |ajb]. £

Inview of the Observations 2 and 3, for mutually perpendicular \

unit vectors {, | and k (Fig 10.24), we have ) .
AA aa A A 1 J
Pxi = jxj=kxk=0 A
iA><JA=|2, lezzf, sziA:J? Fig 10.24

In terms of vector product, the angle between two vectors & and b may be
givenas

It isalwaystrue that the vector product is not commutative, as dxb = —bxa.
Indeed, @xb =|a||b|sin®A, where &,b and A form aright handed system,
i.e, Bistraversedfrom a tob , Fig 10.25 (i). While, bx a=|d||b |sin6 A, , where

B,Qandﬁl form a right handed system i.e. @ is traversed from b to a,
Fig 10.25(ii).

A
n

(@ (i)
Fig 10.25 (i), (ii)
Thus, if we assume dand b to liein the plane of the paper, then f and f, both

will be perpendicular to the plane of the paper. But, h being directed above the
paper while My directed below the paper.i.e. i =—1.
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QDI

X

T
I}

Hence |a||b|sin A
—|a||b|sin6A, =-bxa
In view of the Observations 4 and 6, we have

jxi=-K, kxj=—iand ixk=-].

If aandb represent the adjacent sides of a triangle then its area is given as

1. -
Ela bl. C

By definition of the areaof atriangle, wehavefrom 7,
Fig 10.26,

0 s
D

Fig 10.26

1
Areaof triangle ABC = EAB»CD.
But AB=|b| (asgiven), and CD = |&|siné.
. 1 -, . . 1 _ -
Thus, Areaof triangle ABC = ElbllalSlne =E|aXb|-

If @ and b represent the adjacent sides of a parallelogram, then its area is
D
C

givenby |axb]|.

From Fig 10.27, we have

Areaof paralelogram ABCD = AB. DE.
But AB=|b| (asgiven), and [J
DE=|&|sino. E >
Thus, Fig 10.27
Areaof paralelogram ABCD = |b||a|sin® =|axb].

We now state two important properties of vector product.

Property 3 (Distributivity of vector product over addition): If 3, b and &
are any three vectors and A be a scalar, then

() ax(b+c)=a b a ¢

(i) A(@xb) = (A@)xb=ax(rLb)
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Let dandb be two vectors given in component form as aj +a, ] +a,k and
by +b,] + b,k , respectively. Then their cross product may be given by

i
axb = &
by

F(&’X)

2]
b,
Explanation We have
axb = (af +3,] +agk) x (i +b, ] +byk)
= ay (7 x1) +ay (7 x J) + s (T x k) + ayhy (] xT)
+ 3oy (1x ) + ,by(f xK)
+ aghy (Kx 1) +agh, (K x J) + agy (K x k) (by Property 1)
= ab, (I ) - a; (kxi) - aby (T x )
+ aphy(JxK) + aghy (kxi) —agh, (1 k)
(as ixi=]x]=Kkxk=0 and i xk=—Kkxi, xi =—i x| and kx j=—]xK)
> aibzlz_aibaj_azbl‘2+azbar+asb1j_a3b2r
(s Ix =K, jxk=i and kxi=])
(agbs — 3h, )i — (aybs — 3y T + (@b, — &by )k

~

k

& =

a 83

by b,

Example 22 Find |axb|, if =2+ ]+3k and b=3 +5] -2k
Solution We have

k
3
-2

Q|

X

(o]

I
w N T
g1 B =

[(-2-15)—(-4-9) ] + (10—3)k =-17f +13] + 7k

Hence  |a b| = \/(-17)*+(13)? +(7)? =/507
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Example 23 Find a unit vector perpendicular to each of the vectors (a+b) and
(a—b), where a={ + j+l2, 6:f+21+3|2.
Solution We have a+b =2 +3]+4k and a—b=—-] -2k

A vector which is perpendicular to both a+b and a—b isgiven by

~ ~

]k
(A+b)x(a-b) = |2 3 4|=-21+4]-2k (=C, sa)
0 -1 -2
Now €l = Ja+16+4=+24=2.6
Therefore, the required unit vector is
c 2 -

___1i’\+_j_iﬁ
5|~ V6 6 6

There are two perpendicular directions to any plane. Thus, another unit
2

vector perpendicular to d+b and a—b will be %f——ﬁﬁ—ﬁﬁ. But that will

be a consequence of (a—b)x (a+b).

Example 24 Find the area of a triangle having the points A(1, 1, 1), B(1, 2, 3)
and C(2, 3, 1) asits vertices.

Solution We have AB=j+2k and AC=1 +2] . The area of the given triangle

1 —
is —|ABxAC].
2
Pk
Now, ABxAC =0 1 2/=—4i+2j-k
1 20
Therefore |ABXAC| = J16+4+1=+/21

1
Thus, the required areaiis E\/Z_l
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Example 25 Find the area of a parallelogram whose adjacent sides are given

by the vectors a=3+ j+4k andb=i - +K

Solution The area of a parallelogram with dandb asiits adjacent sides is given

by |axb|.
P] Ok

Now dxb =[3 1 4=5+]-4k
1 -1 1

Therefore |axb| = /25+1+16 =+/42

and hence, the required areais /42 .

| EXERCISE 10.4]

Find |axb|, if a=i—7]+7kand b=3-2] +2k.
Find a unit vector perpendicular to each of the vector a+b and a—b, where
d=3 +2]+2kand b=i +2] -2k .
If aunit vector & makesangl%%with f,%with j and an acute angle 6 with
k , then find 6 and hence, the components of a.
Show that

(a-b)x(a+b) = 2(axh)
Find L and wif (2 +6] +27K) x (i + 4] + uk) =0.
Giventhat a b 0 and daxb=0. What can you conclude about the vectors
aandb ?
Let the vectors & b, & be given as ai+a,]+a:k, bi +b,]+bk,
Gi +C, ] +Ck . Then show that &x (b + &) =axb +&x¢.

If either =0 or b=0, then dxb=0. Is the converse true? Justify your
answer with an example.
Find the area of the triangle with verticesA(1, 1, 2), B(2, 3, 5) and C(1, 5, 5).
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Find the area of the parallelogram whose adjacent sides are determined by the
vectors d=i — j+3k and b=2 - 7] +k.
. - B, - 2 L
Let the vectors @ and b be such that |a|=3 and |b|:?,then axb isa
unit vector, if the angle between a and b is
(A) ©/6 (B) m/4 (C) n/3 (D) w/2
Area of a rectangle having vertices A, B, C and D with position vectors
o~ 1 o~ S 1 2~ S ~ ~ ~ ~ ~
—+=j+4k, i +=j+4k, i —£j+4k and —j —Ej + 4k, respectively is
2 2 2 2
1
(A) > (B) 1
(€) 2 (D) 4

Miscellaneous Examples

Example 26 Write al the unit vectorsin XY-plane.

Solution Let F=xXi+ yT be a unit vector in XY-plane (Fig 10.28). Then, from the
figure, wehavex=cos6 andy=sn6 (since|r | =1). So, wemay writethevector ¢ as

F(=OP)=cos I sin ] -~

Clearly, IT] = Jcos?0+sin?0 =1

Y
A

P(cos0, sinB)
Y —_
<’¢\/ i OP’ = coso?

6 17 PPsin)
X P X =s1noJ

v

YI
Fig 10.28
Also, as 6 varies from 0 to 2, the point P (Fig 10.28) tracesthecircle x2+y? =1

counterclockwise, and thiscoversall possibledirections. So, (1) givesevery unit vector
inthe XY-plane.



456 MATHEMATICS

Example 27 1f { ] k, 20 5,3 2] 3k andi 6] k are the position
vectors of points A, B, C and D respectively, then find the angle between AB and
CD . Deduce that AB and CD are collinear.

Solution Note that if 6 is the angle between AB and CD, then 6 is also the angle
between AB and CD.

Now AB = Position vector of B — Position vector of A
= (21 +5))—( + f+l2)=f+4f—l2

Therefore |AB| = ()2 +(4)%+(-1)% =32

Similarly CD = -2 -8j+2k and |CD|F 672
AB CD

Thus cosO = /AB|CD|

-2+ 48 +(-1)(2) _-36
- (3V2)(6v2) 36

Since 0 < 0 <, it follows that 6 = . This shows that AB and CD are collinear.

=-1

Alternatively, AB %65 which impliesthat AB and CD are collinear vectors.

Example 28 Let d,b and € be three vectors such that |d|=3,|b|=4, |c|=5 and

each one of them being perpendicular to the sum of the other two, find |a+ b+¢ |

Solution Given @-(b+¢) = 0, b-(€+&) =0, ¢-(a+b)=0.
Now |a+b+cf’ = (a+b+c)?>=(a+b+c)-(a+b+c)
(a+7c)

11
jab!
Q
+
Q
b~
(o]
+
g
+
(ox]
(ox]
+
Tl

+ C.(@a+b)+cc
=]af+|bf+|cP
=9+16+25=50

Therefore |a+b+¢| = +/50=5/2
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Example 29 Threevectors 4, b and ¢ satisfy the condition a+b +&=0. Evaluate

thequantity p=a-b+b-c+c-a, if |al, |bl=4 and [C=2.

I}

Solution Since a+b +¢=0, we have

a@ b ¢ =0
or d-a+a-b+a-c =0
Therefore a-b+a-c=-la=-1 . (1)
Again, b-(a+b+c) =0
or a-b+b-¢ = -|b| =-16 e
Smilarly a-c+b-c =—4. . (3

Adding (1), (2) and (3), we have
2(a-b+b-c+a-c) =—21

) -21
or Zu:—Zl,l.e.,p:7

Example 30 If with reference to the right handed system of mutually perpendicular
unit vectors i, j and k, =3 -], =2+ -3k, then express § in the form

1 ﬁz,where *1isparallel to ~ and *2 isperpendicular to o .

SolutionLet , 7, isascaar,i.e, f, =3\ —A].

Now B,=P-f, = @-30) +(1+1)]-3k.
Now, since B2 isto be perpendicular to g, , we should have a.BZ =0.i.e,
3(2-30)-(@+1r) =0

1
A==
or >
Therefore B, ==i—-=] and P _lf+§f_3|2
Bl_ 2 2J 2_2 2]
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Miscellaneous Exercise on Chapter 10
Write down aunit vector in XY-plane, making an angle of 30° with the positive
direction of x-axis.
Find the scalar components and magnitude of the vector joining the points
P(X, Y, z) and Q(X,, Y, 7).
A girl walks 4 km towards west, then she walks 3 km in adirection 30° east of

north and stops. Determine the girl’s displacement from her initial point of
departure.

If a=b+c,thenisittruethat |4 |=|b|+]|c|? Justify your answer.

Find the value of x for which x(f + j +K) isaunit vector.

Find a vector of magnitude 5 units, and parallel to the resultant of the vectors
a=21+3]-k and b= -2]+K.

If =i+ ]+k, b=21—]+3k and c=i-2]+Kk, find aunit vector parallel
to the vector 2a— b+ 3.

Show that the pointsA (1,-2,—-8), B (5,0,-2) and C(11, 3, 7) arecollinear, and
find theratioin which B dividesAC.

Find the position vector of a point R which divides the line joining two points

P and Q whose position vectors are(2a + b) and (a—3b) externaly intheratio
1: 2. Also, show that P isthe mid point of the line segment RQ.

The two adjacent sides of a parallelogram are 2iA—4I+5I2 and f—2}—3l2 :
Find the unit vector parallel toitsdiagonal. Also, find itsarea.
Show that the direction cosines of avector equally inclined to the axes OX, OY

1 1N

Let a=i+4]+2k, b=3-2]+7k and c=2{ — ]+ 4k. Find a vector d

and OZ are

which is perpendicular toboth & and b, and &-d =15.
The scalar product of the vector { + j + k with a unit vector along the sum of
vectors 2f + 4] -5k and AT +2] +3k isequal to one. Find the value of A,

If &, b, ¢ are mutually perpendicular vectors of equal magnitudes, show that

thevector a+b +¢ isequally inclinedto &, b and €.
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Provethat (a+b)-(a+b)=|af +|b[?,if andonlyif & b are perpendicular,

given a=0,b=0.

Choose the correct answer in Exercises 16 to 19.

16.

17.

18.

19.

If 0 is the angle between two vectors & and b , then d-b >0 only when

T T
A) 0<0<— B) 0<0<—
(A) > (B) >

(C) 0<b<m (D) 0<6<™m
Let & andb betwo unit vectorsand 6 is the angle between them. Then a+b
isaunit vector if
2n
A) 0=" B) 9=2 c) == D) 0=2"
(A) 2 (B) 3 © 5 (D) 3
Thevalueof i.(j] K) ] (¢ K k(@ ])is
(A) O (B) -1 €1 (D) 3
If 8 isthe angle between any two vectors @ and b , then |&-b |=|axb | when
0 isequal to

A) 0 B) — c) = D
(A) (B) 2 ©) 5 (D) =
Summary
Position vector of apoint P(x, y, 2) isgivenas OP(=F) = x| + yj + zk , andits

magnitude by /x2 + y? + Z° .

The scalar components of a vector are its direction ratios, and represent its
projections along the respective axes.

The magnitude (r), direction ratios (a, b, ¢) and direction cosines (I, m, n) of
any vector are related as:

l=—, m=
r

a b
—, n=
-

c
r

The vector sum of the three sides of atriangle taken in order is 0.
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The vector sum of two coinitial vectors is given by the diagonal of the
parallelogram whose adjacent sides are the given vectors.

The multiplication of agiven vector by ascalar A, changes the magnitude of
the vector by the multiple |A|, and keeps the direction same (or makes it
opposite) according asthe value of A is positive (or negative).

»

For agivenvector g, thevector a= givestheunit vector inthedirection

Qy

of a.
The position vector of a point R dividing aline segment joining the points

P and Q whose position vectors are aand b respectively, in theratiom: n

(i) internaly, isgivenby LER .
m+n

(i) externaly,isgiven by ) —[EL
m-n

The scalar product of two given vectors dandb having angle 6 between
them is defined as

a-b=|allb|cosh .

Also, when &.b isgiven, theangle'8’ between thevectors dand b may be
determined by

s}
(o]

CcosO =

Q|
T

If @ is the angle between two vectors dand b , then their cross product is
givenas

axb=|a|b|sineA
where A isaunit vector perpendicular to the plane containing a and b . Such
that &, b, Aform right handed system of coordinate axes.

If we have two vectors dandb, given in component form as

d=ai +a,] +a;k and b=bji +b,] +b,k and A any scalar,
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then &+b = (a1+bl)f+(a2+b2)f+(a3+k13)lz;
Ad = (L)l +(Aa,) ]+ (hay)K;

ab = ab +a,b, +ab;;
Pj K
and axb=|a b ¢
8 b ¢

Historical Note

The word vector has been derived from a L atin word vectus, which means
“to carry”. The germinal ideas of modern vector theory date from around 1800
when Caspar Wessel (1745-1818) and Jean Robert Argand (1768-1822) described
that how acomplex number a + ib could be given ageometric interpretation with
the hel p of adirected line segment in acoordinate plane. William Rowen Hamilton
(1805-1865) an Irish mathematician was the first to use the term vector for a
directed line segment in his book Lectures on Quaternions (1853). Hamilton's
method of quaternions (an ordered set of four real numbers given as:

a+bi +q+dk, i, ], k following certain algebraic rules) was a solution to the

problem of multiplying vectors in three dimensional space. Though, we must
mention here that in practice, the idea of vector concept and their addition was
known much earlier ever since the time of Aristotle (384-322 B.C.), a Greek
philosopher, and pupil of Plato (427-348 B.C.). That time it was supposed to be
known that the combined action of two or more forces could be seen by adding
them according to parallelogram law. The correct law for the composition of
forces, that forces add vectorially, had been discovered in the case of perpendicular
forces by Stevin-Simon (1548-1620). In 1586 A.D., he analysed the principl e of
geometric addition of forces in his treatise DeBeghinselen der Weeghconst
(“Principles of theArt of Weighing”), which caused amajor breakthrough in the
devel opment of mechanics. But it took another 200 yearsfor the general concept
of vectors to form.

In the 1880, Josaih Willard Gibbs (1839-1903), an American physicist
and mathematician, and Oliver Heaviside (1850-1925), an English engineer, created
what we now know as vector analysis, essentially by separating the real (scalar)
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part of quaternion from its imaginary (vector) part. In 1881 and 1884, Gibbs
printed atreatise entitled Element of Veector Analysis. Thisbook gave asystematic
and concise account of vectors. However, much of the credit for demonstrating
the applications of vectorsis due to the D. Heaviside and P.G. Tait (1831-1901)

who contributed significantly to this subject.

—_— e —



Chapter 1 1

(THREE DIMENSIONAL GEOMETRY)

¥ The moving power of mathematical invention is not
reasoning but imagination. — A. DEMORGAN +»

11.1 Introduction

In Class X1, while studying Analytical Geometry in two
dimensions, and the introduction to three dimensional
geometry, we confined tothe Cartesian methods only. In
the previous chapter of thisbook, we have studied some
basic concepts of vectors. We will now use vector algebra
to three dimensional geometry. The purpose of this
approachto 3-dimensional geometry isthat it makesthe
study simple and elegant*.

In this chapter, we shall study the direction cosines
anddirection ratios of a line joiningtwo points andalso
discuss about the equations of lines and planes in space
under different conditions,angle between two lines, two

Y R Leonhard Euler
planes, aline anda plane, shortest distance between two (1707-1783)

skewlinesanddistance of apoint from a plane. Most of

the above resultsare obtainedin vector form. Nevertheless, we shall also translate
these resultsin the Cartesian form which, at times, presentsa more clear geometric
andanalyticpicture of the situation.

11.2 Direction Cosines andDirection Ratios ofa Line

From Chapter 10, recall that if adirected line L passing through the origin makes
angles a, f and y with x, y and z-axes, respectively, called direction angles, then cosine
of these angles, namely, cos a, cos B and cos vy are called direction cosines of the
directedline L.

Ifwe reverethedrectionof L, thenthe direction anglesarereplacedby their supplements,

i.e, /6, 7E[and 76—} Thus, the signs of the direction cosines are reversed.

* For various activities in three dimensional geometry, one may refer to the Book
“A Hand Book for designing Mathematics Laboratoryin Schools”, NCERT, 2005
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L1

Fig 11.1

Note that a given line in space can beextended in two opposite directionsand so it
hastwo sets of direction cosines. In orderto havea uniqueset ofdirection cosines for
a given line in space, we must take the given line as a directed line. These unique
direction cosines are denoted by /, m andn.

Remark If the given line inspace doesnot passthrough the origin, then, in order to find
itsdirection cosines, we drawa line through the origin and parallel tothe given line.
Nowtake one ofthe directedlines from the origin and findits direction cosines astwo
parallel line have same set of direction cosines.

Any three numbers which are proportional to the direction cosinesof aline are
called the direction ratios of the line. If /, m, n are direction cosinesand a, b, care
direction ratiosof a line, then a =/, b=m and ¢ = \n, for anynonzero L€ R.

Some authorsalso call direction ratios asdirection numbers.

Let a, b, cbedirection ratiosof aline andlet /, m and » be the direction cosines
(d.c’s)of the line. Then

i =2 -2 (say), kbeing aconstant.

a b c
T herefore I =ak, m=bk,n=ck .. (1)
But F+m?2+n?2=1
T herefore B@+b*+c)=1

1

or k= t TV
\[az +b%+c?
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Hence,from (1), the d.c.’s ofthe lineare
b c

a
l:i lm:i ,n:i—
Jaz +b%+c? Jaz +b%+ 2 «/az +b%+ 2

where, depending on the desiredsign of k, eithera positive oranegative sign isto be
takenfor /, mandn.

Forany line, if a, b, c are direction ratios of aline, then ka, kb, kc; k=0 isalso a
set ofdirection ratios. So,any two sets of direction ratios of aline are also proportional.
Alg, for any linethere are infinitely many sets of directionratios.

11.2.1 Relation between the direction cosines of a line
Considera line RSwithdirection cosines/, m,n. Through -
theorigin draw a line parallel to the given line and take a
point P(x, y, z) onthisline. From P drawa perpendicular
PA onthe x-axis(Fig. 11.2).

Let OP = r. Then COS(F((% = This gives x = Ir

r
Similarly, y=mrandz=nr
Thus X+ y + 2 =P (P + m?+ nd)
But X+ Yy + 2=
Hence P+m+n=1 Fig 11.2

11.2.2 Direction cosines of a line passing through two points

Since one andonly one line passes through two given points, we can determine the
direction cosines of a line passing through the given pointsP(x , y ,z) and Q(x,,y,, z,)
asfollows (Fig 11.3 (a)).

F P
o Q)
PN T
L& i
> b ]
- [ | 0
e by -~
k-"'f R ,,:-"i
* i3] b 1
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Let 7, m, n be thedirection cosines of thelinePQ and let it makes angles o, 3 and y
with the x, y and zaxis, respectively.
Draw perpendiculars from P and Q to XY-plane to meet at Rand S. Draw a

perpendcular from P to QSto meet at N. Now in right angle triangle PNQ, ZPQN=
v (Fig11.3 (b).

N _
T herefore, cosy = NQ_z-3
PQ PQ
Similarly cosa = 2= and COSB:y2 N
PQ PQ

Hence, the direction cosinesof the line ssgmentjoiningthe pointsP(x, y,,z,) and
Q(x, v, z,) are
Xp =X Yo =N Z "4

PQ PQ PQ
/ \
where PQ= \/(xz —x)° ‘|‘(y2 R & _Zl)

T he direction ratiosof the line segment joining P(x , v, z)and Q(x,, ,, z)
may be taken as

X, =Xy YV, =V 2,7 2 OV X — X, Y, = YV 2, Z,

Example 1 Ifaline makesangle 90° 60°and 30°with the positive direction of x,y and
z-axis respectively, find its direction cosines.

1
Solution Letthed.c.'softhelinesbe/,m,n. Then /=c0s90°=0, m =c0s60°= E

3

n =cos 30°= -
Example 2 Ifaline hasdrectionratios2,— 1, - 2,determine itsdirection cosines.
Solution Direction cosines are

2 -1 ~2
22 H (12 (<22 22 4 (<12 4 (<2)7 422+ (~1) + (-2)?
2 -1 -2

or —y = —
33 3

Example 3 Find the direction cosines of the line passing through the two points
(-2,4,-5)and (1, 2, 3).
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Solution We know the direction cosines of the line passing through two points
P(x, »,, z) and Q(x,, y,, z,) are given by

Xo =X Vo =N Zp—Z

PQ PQ PQ

where PQ= J(xz - x) + (,-y)+ (22 - zl)2
HereP is(-2,4,-5)and Qis(4, 2, 3).

S0 PQ=\(L- (-2 +(2-4 + @3- (B) =77
Thus, the direction cosines ofthe line joining two pointsis

3 -2 8
NTT  NTT ATT
Example 4 Find the direction cosines of x, y and z-axis.
Solution Thex-axismakesangles 0°,90°and90° respectively with x, y and z-axis.

Therefore, the direction cosines of x-axisare cos0°, cos 90°, cos90°i.e., 1,0,0.
Similarly, direction cosines of y-axisandz-axisare 0, 1, 0 and0, 0, 1respectively.

Example 5 Showthat the pointsA (2, 3,-4),B(1,-2,3) and C (3, 8,— 11) are

collinear.

Solution Direction ratios of line joiningA and Bare
1-2,-2-3,3+4ie.,-1,-5,7.
Thedirection ratios of linejoiningB and Care
3-1,8+2,-11-3,i.e.,2,10,-14.

Itis clearthat directionratios of AB and BC areproportional, hence, AB isparallel
to BC. But point B is common to both AB and BC. Therefore, A, B, C are
collinear points.

EXERCISE 11.1|

1. Ifaline makes angles90°, 135°, 45°with the x, y and z-axes respectively, findits
direction cosines.

2. Findthedirection cosines of a line which makesequal angles with the coordinate
axes.

Ifaline hasthedrection ratios—18, 12,— 4, thenwhat areits direction cosines?
Showthatthe points(2, 3,4), ~1,-2, 1), (5,8, 7) are collinear.

Find the direction cosines of the sides of the triangle whose vertices are
(3,5,-4),(-1,1,2)and(-5,-5,-2).

n A W
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11.3 Equation ofa Line in S pace

We have studied equation of lines in two dimensionsin Class XI, we shall nowstudy
the vector and cartesian equationsof a line in space.

Alineis uniquely determined if
(i) it passes througha givenpoint and hasgiven drection, or
(i) it passesthrough two given points.

11.3.1 Equation of a line through a given point and parallel to a given vector
Let g betheposition vector ofthegivenpoint -
A with respect to the origin O of the K R
rectangular coordinate system. Let /be the
line which passes through the point A and s A

parallel to a given vector b.Let 7 bethe =]

position vector of anarbitrary point P on the

line (Fig 11.4). ¥
Then AP is parallel to the vector b,ie,

AP=Lb, where A is some real number. X Fig11.4

OP - 0A
ie. Ab = F G

Conversely, for each value of the parameter A, this equation gives the position
vector of apoint P on the line. Hence, the vector equation of theline is given by

F=d+\b .. (1)

But AP

Remark If l;:af‘|'bj+cl€, then a, b, c are direction ratiosof the line and conversely,
if a, b, c are direction ratios of a line, then b= a7 + bj + ck will be the parallel to
the line. Here, b should not be confused with |5|.

Derivation of cartesian form from vector form

Let the coordinates ofthe given point A be (x, y,, z)) andthe direction ratios of
the line be a, b, c. Consider the coordinatesofany point P be (x, y, z). Then

Fo=xi+ y}'+zl€;5=x1§+ylj+zlk
and l;=aiA+b]A'+cl€
Substituting these valuesin (1)andequating the coefficients of i, j and k , weget
x=x +ha; y=y +Ab, z=z+\c .. (2)
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T hese are parametric equations of the line. Eliminatingthe parameter A from (2),
we get

= = .. (3)

Thisis the Cartesianequation of the line.

If 1, m, n arethe direction cosines of theline, theequation of the line is

X=X5 _ VY= h_ 3275

) m n
Example 6 Findthe vector and the Cartesian equations of theline through thepoint

(5, 2, - 4) and which isparallel to the vector 37 + 2] — 8k.
Solution Wehave
G =5+2j-4kandb=37+2j-8k
Therefore, the vectorequation of the lineis
F=5i+2j-4k+1(3i+2]-8k)
Now; 7 isthe positionvector of any pointP(x, y, z) on the line.
Therefore, xi+yj+zk =5i+2j—4k+ 1 (37 +2]-8k)

G+30)i+(2+20) j+(-4-8\)k
Eliminating ., we get
x-5 y-2 z+4
3 2 -8
which isthe equation of the line in Cartesian form.

11.3.2 Equation of a line passing through two given points

Let g and p be the position vectors of two
points A(x,, y, z) and B(x, vy, z,),
respectively that are lyingonaline (Fig 11.5).

Let 7 be the position vector of an
arbitrary point P(x, v, z),thenP is a pointon

the line if and only if AP= =4 and

AB=b-a are collinear vectors. T herefore,
P ison the line if and only if

F—a=\b —3)
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or F=a+i(b-ad),\ € R, .. (1)
Thisisthe vectorequation of the line.
Derivation of cartesian form from vector form
We have

F=ity jtk, i 1y, j Ttz kand b=,7 1y, j 12, £,
Substituting these valuesin (1), we get

Xi+y j+zk=xji+y j+zk+i[(x;—x)i+(, -n)Jj+(z,—2z)k]
Equatingthe likecoefficients of 7, 7, &, weget

x=x + A, -x);y=y,+A@,-y) z=z+r(z, - z)
On eliminating A, we obtain

X% _ YV h_ 7%

X=X VN L4
which isthe equation of the line in Cartesian form.

Example 7 Findthe vector equation for the line passingthrough the points (-1, 0,2)
and(3, 4,6).
Solution Let @ and 5 bethe positionvectors of the point A(-1, 0,2) andB(3, 4, 6).
Then i=i12k
and pRita )6k

b—G=4i+ 4j+4k
Let 7 bethe position vector ofany pointon the line. Thenthe vector equation of

the lineis
F=ritiHuit b
Example 8 The Cartesian equation of alineis

x‘*3_y_5_z‘|'6

2 4 2
Findthe vector equation for the line.

T herefore

Solution Comparingthe givenequation with the standard form

X=x_Y=nh_zZ274
a b c
We observe that x1:—3,y1:5,21:—6;a=2,b=4,c=2.
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Thus, the required line passesthrouch the point (- 3, 5,-6) andis parallelto the

vector 2i +4j+ 2k . Let 7 bethe position vector of any point onthe line, then the
vector equation of theline is given by

FX—37157—6k) + 1 (20 +4)+2k)

11.4 Angle between Two Lines i
Let Ll_and I__2 be_tvvo Iinfaspassingthrough the origin
and with direction ratios a, b, ¢, and a,, b,, c,
respectively. Let P beapoint onL, and Q bea point

on L. Consider the directed lines OP and OQ as E—?L-'
givenin Fig 11.6. Let 6 be the acute angle between i
OP and OQ. Now recall that the directed line ;;gl_é-ff— \ A

segments OP and OQare vectors with components “ =
a,b,canda, b, c, respectively. Therefore, the

angle 0 between them is given by NE Fig 11.6
a,a, + b b, +c,c,
cosO = - (1)
ai + B+ Ja} +b3+c]
The angle ketween the lines in terms of sin 0 is given by
sin 0= \1—os? €
- [1- (a,a, +bb, +Clcz)2
(a +0f +cf) (a3 + 5 +¢5)
2 2 2 2 2 2 2
_ \/(“1 +b +¢f )(a2 +b; + 5 )—(ala2 +bb, +cc,)
J(a? +02 4 ) (a2 +b2+c2)
9 \/ (4 b, 4, b1)2 _Hbl ¢, T hq )2 +(Cl a )2 )

\/ a +b12 +012 \/ as +b§ +c§

In casethe lines L and L, do not passthrough the origin, wemay take

lines L andL’, which are parallel to L, and L, respectively and pass through
the origin.
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If instead of direction ratios for the lines L and L, direction cosines, namely,
[, m,n forL andl,m,n, forL, are given,then(1)and (2)takesthe following form:

cosO=|lL+mm,+nn| (as [*+m+n’>=1=1+m?+n5) ..(3)

and sin 6 = ‘/(Zl my =1, ml)z_(mﬂlz —my ”1)2"'(”112 _”211)2 - (4)

Two lineswith direction ratios a, bl, c and a, bz, c,are
(i) perpendiculari.e. if 6=90°by (1)
aa, +bb +cc, =0
(i) paralleli.e. if6=0by (2)

a
S_b_4a

a2 bz Cy
Now; we findthe angle between two lineswhen their equationsare given. If 0 is
acute the angle between the lines
7 =a 1t and 7 = a, b,
by b
15:]15-]
In Cartesian form, if 0 isthe angle between thelines

then cosO =

x_xl y_yl_Z_Zl (1)

and = = ..(2)

where, a,b, c,anda, b, c,arethedirection ratiosofthelines (1) and(2), respectively,
then

aa, +bb,+cc,

Nal +b7 +cE \JaF +b3 +c

cos 0 =

Example 9 Findtheangle between the pair of linesgiven by
31427 4k +1(G +2]+ 2Kk)

r

and 7 =51-27+u(3i+2]+6k)
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Solution Here b, = i+2j+2kand b, = 31 +2 ] +6k
The angle 0 between the two linesis given by

b-b, | |G+2]+2k)- 37 +2]+6k)
€cos0 = [T==7|=
|| |5,| V1+4+49+4+36
_ 3+4+12|_3g
3x7 21
s oo (3
ence = CO0S 21

Fxample 10 Findthe angle between the pair of lines
x+3 y-1 z+3

3 5 4
q x+l y-4 z-5
an 11 2

Solution Thedirection ratios of the first lineare 3, 5,4 andthe direction ratiosofthe
secondline arel, 1, 2. If0istheangle between them, then

16 16 :gig

V5046 54246 15

31+51+4.2
N 452 4 42 12412 4+ 22

cos 0 =

4 . 8+/3
Hence, the required angle is cos™ (I—[J .

11.5 Shortest Distance between Two Lines

If two linesin spaceintersect at a point, then the shortest distance between them is
zero. Also, if two linesin space are parallel, £

then the shortest distance between them 1

will be the perpendicular distance, i.e. the

length of the perpendicular drawn from a _ |c

point on oneline ontothe other line. = e —F
Further,in a pace, thereare lines which 1] h:f,____

are neither intersectingnor parallel. Infact, 1. [

such pair of lines are non coplanar and Gl 7 >y

are called skew lines. For example, let us ey EE\\_-;

consider aroom of size 1, 3, 2 unitsalong 1_-.:(-_-""-"- )
x, y andz-axesrespectively Fig11.7. Fig 11.7
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Theline GE that goesdiagonally acrosstheceiling andthe line DB passes through
one corner ofthe ceilingdirectly above A and goes diagonally down the wall. These
linesare skewbecause they are not parallel andalso never meet.

By the shortest distancebetween two lines we meanthe join of apointin oneline
with one point on the other line so that the length of the segment so obtainedisthe
smallest.

For skew lines, the line of the shortest distance will be perpendicular to both
thelines.
11.5.1 Distance between two skew lines

We nowdeterminethe shortest distance between two skewlines in the followingway:
Let / and /, be two skewlines with equations (Fig. 11.8)

Fo=d+hb - (1)
az +H52 (2)

Take any pointSon / withposition vector @, and T on/,withposition vector a,
Then themagnitude of the shortest distance vector |
will ke equaltothat of the projection of ST alongthe T Q
direction of theline ofshortest distance (Se10.6.2). A

and r

If PQ is the shortest distance vector between

[ and/,, then it beingperpendicular to both 4 and

b,, the unit vector ; along PQ would therefore be
Fig 11.8
PR R B - (3)

Then pPQ =d n
where, d isthe magnitude ofthe shortest distance vector. Let 6 be the angle between
ST and PQ. Then

PQ = ST |cos 0]
5 ) PQ-ST
ut cos0 = |5~ 0=
|PQ[|ST |
d”;'(dz — 51) . — . .
ol (since ST =4, —a,)

([;1 X 522'(53 —dy)
ST |bl><b2|

[From (3)]
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Hence, therequired shortest distance is
d=PQ=ST |cos 0]

_| (B x b)) . (@, -ad)
| by x by|

or d

Cartesian form
The shortest distance between thelines

AT hM Yo _zo4

and l.x_xzzy_yzzz_zz

a, b, 7

\/(blcz —bye))* + (qay — ¢a1)* +(ab, —ayhy)’

11.5.2 Distance between parallel lines
If two lines/ and [ are parallel, then they are coplanar. Let the linesbe given by

= d +Mb .. (1)
and F=d,+ub - (2)
where, g, isthe position vector of apoint Son/ and 1 '!?:' [
a, isthe positionvector of apointT on/ Fig11.9.
As 1 are coplanar,ifthe foot of the perpendicular
from T onthe line/ isP, then thedistance between the AN P fy
lines / and ,= | TP|. Sield
. - Fig 11.9
Let 6 bethe angle between thevectors ST and b. '8
Then
b x ST = (| 5| ST|sin 0)7 ..(3)

where 7 isthe unit vector perpendicular to the plane of the lines/ and/,

But ST=4a, 4
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Therefore, from (3), we get
b x(d,—a) =|b|PTa  (sincePT =ST sin 0)

ie., |bx(@,-@)|=|5|PT1  (as|a|=1)
Hence, the distance between the given parallel lines is

d=|PT|= bx(a,—a,)

|15

Example 11 Find the shortest distance between the lines / and /, whose vector
equationsare

P+ A Qi-j+k) (1)
and F=2i +j—k+p (3 -5)+2k) . (2)

Solution Comparing (1) and (2)with 7 =g, + A 51 and 7 =a, +u EZ respectively,

we get G =i+j, b=20i-]j+k
d, =27 +j— k andb, =37 -5 +2k
T herefore i, -d =i-k
and byxb,= (20 —j+k)x(3i-5j+2k)
ik
=2 -1 1|=3i-j-7k
3 -5 2

So |b, xb,| = [0 +1+49 = /59

Hence, the shortest distance between the given linesis given by

d = (b_.lxgzﬂ)-(falz_gll)l :|3_0+7|: 10
hinl | e ¥

Example 12 Findthe distance between the lines/ and / given by
=i+2]-4k+1(2i+3]+6k)

Ny

and 7 =31+37-5k+pn(2i+3]+6k)
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Solution Thetwo linesare parallel (Why?) Wehave

G =i1+2]—4k, 4 = 3i+3j—5k and b = 2i +3j +6k

Therefore, the distance between the linesis given by

or

ik

Jo|bx@-ay| | |28 6
5] 2 1 -1
«/4+9+36

_|-9i+147-4k|_ /293 _+[293
V49 Jag 7

| EXERCISE 11.2]

Showthat the three lineswith direction cosines

2 3 4 4 12 3 3 4 12 .

E’ E E E 1—3 ; E B E E are mutually perpendicular.
Showthat theline throughthe points(1,-1, 2), (3,4, —2)isperpendicular to the
line through the points (0, 3, 2)and(3, 5, 6).

Showthat the line through the points(4, 7, 8), (2, 3, 4) isparallel to the line
throughthe points(-1,- 2, 1),(1, 2,5).

Find the equation of the line which passes through the point (1, 2, 3) and is
parallelto the vector 37 +2 j —2 k.

Findthe equation ofthe line invector and in cartesian form that passes through
thepoint with position vector 27 —j + 4k andisin the direction 7 + 2 j — .
Findthe cartesian equation oftheline which passesthroughthe point (-2, 4, —5)

x+3 y—-4 z+8
5 6

and parallel to the line given by

x—-5 y+4 z-6
7

Findthe vector andthe cartesian equations of the linesthat passesthrough the
origin and(5, - 2,3).

Thecartesian equation of aline is . Write its vector form.
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11.

12.

13.

14.

16.

17.
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Findthe vector andthe cartesian equations of the line that passesthrough the

points (3,— 2,-5), (3,-2,6).
Findthe angle betweenthe following pairs of lines:
() 7=27/-57+k+A1(31+2]+6k) and
F=Ti—6k+u(i+2j+2k)
() 7=3i+j-2k+1(f—]-2k) and
F=2i-7-56k+pn(3i—5j-4k)
Findthe angle between the following pair of lines:
0) x‘?_y_I_z‘|3andx‘|2_y_4 —=Z 5
2 5 =3 T 8 4

Z — —_—
1 4 1 8
Findthe values of pso that the lines 1-x = Ty-14 = 23

2p 2
and =7 _Y=5_5822 et right angles.
3p 1 5
Show that the lines x_5= y+2 ~Zand Z=Z=Z are perpendicular to
7 5 1 1 2 3

eachother.
Findthe shortest distance between thelines

F=(f+2j+k) + L@ —-]+k) and

F=2i—j—k+pQi+j+2k)
Findthe shortest distance between thelines

+1 +1 z+1 -3 -5 -7
r+l _y+l 2 and X _Y _z

7 -6 1 1 -2 1
Findthe shortest disance betweenthe lineswhos vector equationsare
F=(f+27+3k) + A —-3]+2k)
and 7 =47+57+6k+u (27 +3] +k)
Findthe shortest disance betweenthe lineswhos vector equationsare
F=(1-1)i+(-2)j+(B3-24%k and
F=(s+D)i+(@2s-1)j-(2s+Dk
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11.6 Plane
Aplane is cetermined uniquely ifany oneof thefollowing is known:

(i) thenormal totheplane anditsdistance from the originisgiven,i.e., equationof
aplanein normal form.

(if) it passes through apoint and is perpendicular toa given direction.
(iii) itpasses through three givennon collinearpoints.
Nowwe shall findvector and Cartesian equations of the planes.

11.6.1 Equation of a plane in normal form

Consider a plane whose perpendicular distance from theoriginisd (d #0).Fig11.10.

If ON isthe normal from the origin tothe plane, and 7 isthe unitnormal vector

along ON. Then ON=d 7 . Let P be any z

point on the plane. T herefore, NP is

perpendicular to ON.

Therefore, NP-ON =0 (1) P(x, ,2)

Let 7 bethepositionvectorof thepointP, 7

then NP=7 — d 7 (as ON-HNP=0P) d N

Therefore, (1) becomes 6) Y
(F-dn)-dn=0 X/
- A Fig 11.10

or (F=dn)-n=0 (d=0)

or Fon—dn-n=0

ie., Fon=d (asn-n=1) .. (2)

Thisisthe vectorform of the equationof the plane.
Cartesian form

Equation (2) givesthevector equation of a plane, where 7 is the unit vector normalto
the plane. Let P(x, y, z) beany point on the plane. Then

OP = F=ityjtk
Let /, m,n be the direction cosinesof 7. Then

n= l[+mj‘|‘nl€
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Therefore, (2) gives

(xf+yj+zl€)-(lf+m}'+n lg)zd
ie., Ix+my+nz=d .. (3)
Thisisthe cartesian equation of the planein the normal form.

Equation (3)showsthat if 7-(a i + b ] + ¢ k)= d isthevector equation

of a plane, then ax +by + cz=d is the Cartesian equation of the plane, where a, b
and c are the direction ratiosof thenormal to the plane.

6
Example 13 Find the vector equation of the plane which is at a distance of E

from the origin anditsnormal vector from the origin is 27 —37 4.
Solution Letji= 2{ -3 +4 k.Then
i 2{-3j+4k 2i-3j+4k
|l Ja+9+16 29
Hence, the required equation of the plane is
F(i §+_—3}'+ilgj=L
29 297 29 ) 29

Fxample 14 Findthedirection cosinesof theunit vectorperpendicular tothe plane

n =

7-(6i -3 j-2k)+1 = 0 passingthrough theorigin.
Solution Thegivenequation can be writtenas
F(-61+3j+2k)=1 (1)

Now |-6f +3j+2k|=.36T0 4=
Therefore, dividingboth sides of (1) by 7, we get
- ( 6 ~ 3 - 2 "] 1
rl—-—i+—j+—k|=—=
/ 7 7 7
which is theequation of the plane in the form 7 *n —=.

A~

This shows that n = — gf +7 J+ 7£l€ is a unit vector perpendicular to the

planethrough the origin. Hence, the directioncosinesof 7 are __6
7

~N | w
~ o
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Example 15 Find thedistance of the plane 2x— 3y +4z— 6 =0 from theorigin.

Solution Sincethedirection ratios ofthe normal to the plane are 2, -3, 4; thedirection
cosinesof it are

2 3 4 2 3 4
22+ (-3)2 447 22 (-3 142 22 1 (32 +42 " g 29 29
Hence, dividing the equation 2x— 3y+4z—6 =0i.e.,, 2x -3y +4z=6 throughout by

J29, we get

2 -3 4 6
—— Xt =yt =z =—F=
V29 729 N29 N29
Thisis of the form Ix + my + nz=d, where d isthe distance ofthe plane fromthe

.. . ... b
origin. So, the distance of the plane from theorigin is ——.

g p g 129
Fxample 16 Findthe coordinates of the foot of the perpendicular drawn from the
origin to the plane 2x—3y+ 4z—6 =0.

Solution Letthecoordinates of the foot of the perpendicular P from the origintothe
paeis(, y, z) (Figl1.11).

' V4
Then, thedirection ratiosofthe line OP are N
X, Y 2,
Writingthe equation of the planein thenormal Py 2)
form,wehave |\ V.-
2 .3 - 4 __ 6 o
V297 297 V29 29 VARG
2 -3 4 . .
where, —— —==,—= are the direction
© 729 29 VP29 X
cosinesof the OP. Fig 11.11

Since d.c. sanddirectionratiosof a lineare proportional, wehave

X _ N 2
2 T3 Ttk
J29 0 29 29
2k _3k Ak

|e, X =7, = — ;=
T Re T 29 e
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6
Substituting these in the equation of the plane, we get k= E

Hence, the foot of the perpendicular is (E—_lS ﬁj
29 29 29
If  isthe distance from the origin andZ, m, n are the direction cosinesof

the normal to the plane through the origin, then the foot of the perpendicular is
(ld, md, nd).

11.6.2 Equation of a plane perpendicular to a £

given vector and passing through a given point
In the space, there can be many planes that are
perpendicular to the given vector, but through agiven
pant Hxl,yl, z,), only one such plane exists (see

, .
Fig11.12). / "
Leta planepassthrough apomtAwrthEosmon " Fig 11.12

vector a andperpendicularto the vector N.

e P[-"ll.l-'nl -‘-:

Let 7 bethe position vector of any pointP(x, y, z) in the plane. (Fig11.13).

Thenthe point P liesin the plane ifand only if ;"
AP is perpendicular to N.i.e., AP.N=0. But .I'Jr\-ﬁ-\""—\-.._\_\_\_ﬁ'{f
. - i
AP=7—a.Therefore, (F—a)-N=0 .. (1) / N s “‘m__?
Thisisthe vectorequationof the plane. i

q ; N

Cartesian form nll = ; .,r

Let the givenpoint Abe (x,y,, z), P be (x,y, 2 "-:E"F "“H_M;

anddirection ratiosof N are A, BandC. Then, Fig11.13

éz)clf+yl}'+zll€, ?:xf+yj+zl€ and Nq\;"'BJA'l'CIQ

Now (7-ad)*N=0
) [(x—xl)iA+(y—y1)jA'+(z—zl)l€}-(Af+ B]A'+Cl€)=0
i.e. Ax-x)+B@y-y)+C(iz-z)=0

Example 17 Find the vector andcartesian equations of the plane which passesthrough
thepoint (5, 2, — 4) and perpendicular tothe line with direction ratios 2, 3,-1.
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Solution We have the position vector ofpoint (5,2,-4) as =57 + 2] — 4k andthe
normalvector N perpendicuarto the planeas N=27+3;—%
Therefore, the vector equation ofthe planeisgivenby (7 —a).N =9
or [F—(5i+27-4k)]- (27 +3j-k)=0 . (1)
Transforming (1) into Cartesian form, we have

[(x=5)i +(y—2) j+(z+4)k]- (27 +3-k)=0
or 2(x—5)B(y—2) (- 1)

ie. 2x +3y-2z=20
whichis the cartesian equation of the plane.

11.6.3 Equation of a plane passing through three non collinear points

Let R,Sand T bethree non collinear pointson theplane with position vectors a ,band
¢ reyectively (Fig11.14).

%
(RS X RT)
R
P
A7
>Y

X
Fig 11.14

Thevectors RS and RT are in the given plane. Therefore, the vector RS XRT

isperpendicular totheplane containingpointsR,Sand T. Let 7 be the positionvector
ofanypoint Pinthe plane. T herefore, theequation of the plane passing through Rand

perpendicularto the vector RS XRT is
(7-d) - (RSxRT) =0

or (F-a).[(b-a)x(¢ -a)] =0 .. (1)
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Thisisthe equation oftheplane in vector form passingthroughthree noncollinear
points.

Why wasit necessary tosay that the three points A

hadto ke noncollinear? Ifthe threepoints were on the same
line, then there will be many planes that will contain them
(Figl11.15).

These planeswill resemble the pages of a book where the
linecontaining the pointsR, Sand T aremembersin thebinding
of the book.

Cartesian form Fig 11.15
Let (x,,»,, z,), (x, ¥,y 2z,) and (x,, v,, z) be the coordinates of the points R, Sand T
respectively. Let (x,y,z) be thecoordnatesof any point P on the planewith position

vector ¥ .Then
RP =(x-x)i+(W-y)j+(-2) k
hg :(xz_xl)’l: +(yz_y1)j +(Zz_21) Ig

ﬁ :(xs_xl)’l:+(y3_y1)]’: + (Zs_Zl) k
Substitutingthese valuesin equation (1) ofthevector form and expressingit inthe
formof a determinant, wehave

X=X Y=y Iz
X=X V= 5,7 5|=0
=X V3= 4375
which is theequation ofthe planein Cartesian formpassingthroughthree noncollinear
points (x,, ¥, z,), (x,, ¥,, z,) and (x,, v, z,).
Example 18 Find the vector equations of the plane passing through the points
R(2,5,-3),5-2,-3,5)andT(5, 3,-3).
Solution Let =276 j—8k , b=—2i-3j+5k , ¢=5i 133k
Then the vector equation of the plane passing through , » and gand is
given by
(7-d)-(RSxRT) =0 (Why?)
or (F—ad)-[(b-d)x(¢—d)] =0
ie. [F 27157 —3k)] 1(—2i —8 jI8k) X3i —=2/)]=®
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11.6.4 Intercept form of'the equation of a plane

In thissection, we shall deduce the equation of a plane intermsof the interceptsmade
by the planeon the coordinate axes. Let the equation ofthe plane be

Ax+By+Cz+D =0 (D=#0) . (1)
Let the plane make interceptsa, b, con x, y and z axes, respectively (Fig11.16).
Hence,the plane meets x,y and z-axes at (a, 0,0), T
(0, b,0), (0,0, c),respectively.
-5 T (il
T herefore Aa+D=00rA= P
- Y
Bb+D=0o0rB= > ___,-f"'__‘_}' 0 Uhh-ﬂ;
D [RPRIA

Cc+D=00rC=7

* Fig 11.16
Substituting these values in the equation (1) of the 1g 1
plane and simplifying, we get
£+l+i =1 (1)
a b c

which is the required equation of the planein the intercept form.

Example 19 Findthe equation of the plane with intercepts 2,3 and4 onthex, y and
z-axisregectively.

Solution Lettheequationof the planebe

£+Z+£ =1 (1)
a b c
Here a=2,b=3,c=4.
Substituting the values of a, band ¢ in (1), we get the required equation of the

plane as %+%+§:1 or 6x+4y+3z=12.

11.6.5 Plane passing through the intersection

I

of two given planes ’,-f"_" |

Let n, and =, be two planes with equations - \?\\
1
1

|
I
I
L W) IR . " o
7 iy, =d and 7 ‘i, =d, respectively. Theposition N
vectorof any pointon the line of intersection must el
satisfy both the equations(Fig11.17). Fig 11.17
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If 7 isthe position vector ofapointon theline, then
t-n =dand 7-n, =d,
Therefore, for all real values of A, wehave
{-(m+An,) = d +\d,
Since 7 isarbitrary, itsatisfies for any point onthe line.
Hence, the equation 7 - (7, +An,)=d, +\d,represents a plane ., which is such

thatif any vector 7 satisfies both the equations  and r,, it also satisfies the equation
m,i.e., anyplane passingthrough the intersection of the planes

Fon, = djand 7 -n, =d,
hasthe equation Fo(ig+Miy)=d + M, .. (1)
Cartesian form
In Cartesian system, let

= Ai+B, j+Ck
i, = Ayi+B, j+C,k
and 7= xf+yf+zl€

Then (1) becomes

x(Al+ M) +y (B + MB)+z(C + AC)=d + M,
or (Ax+By+Cz-d)+ MAx+B y+C,z—d)=0 - (2)
whichis the required Cartesian form of the equation of the plane passing through the
intersection of the given planesfor each value of A

Example 20 Findthe vector equation of the plane passingthrough the intersection of
theplanes 7 (7 +j+k)=6 and 7 - (27 +3 j+ 4k)=—5,and the point (1,1, 1).
Solution Here, 7 =i+ j+k and i, = 27 +3j+4k;

and d =6andd,=-5

Hence, usingthe relation 7 - (ii, + Aii,)=d, +Ad,, Wweget

Fo[f+]+k+0 (27 +3]+4k)] = 6-51

or 7o[(1+20) 7+ W+31) +(1+40)k] = 6-51 .. (1)

where, A issome real number.
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Taking F =ity j 12k, we get
(xi+y j+zk)[Q+20)7 +@+31) j+ (1+ 40)k]=6—5M
or (L+20)x+ (L +30)y+ (1 +4))z=6-5L
or (x+y+z-6)+A(2x+3y+4z+5)=0 .. (2)

Given that the plane passesthrough the point (1,1,1), it must satisfy (2), i.e.
(1+1+1-6)+A(2+3+4+5)=0

3

or A= ﬂ

Puttingthe valuesof Lin (1), we get

F{(1+§jf+(l+ij}'+(l+—jfc} - 6_E
7 14 7 14
or F( Eﬁéﬁgl\:) -2
7 14 7 14

or 7-(20i +237+26k) = 69
whichisthe requiredvector equation of theplane.
11.7 Coplanarity of Two Lines
Let the given linesbe

7= a4k .. (1)
and 7 = d,+pb, - (2)

Theline (1) passesthrough the point,say A, with position vector a,andisparallel

to El.TheIine (2) passesthrough the point, say B with positionvector a, and isparallel

to b,.

Thts, AB = &, 4,

Thegiven linesare coplanarif andonlyif AB isperpendicular to legz.
ie. AB.(b,xb,) =0 or (4,—a,)-(bxb,) =0

Cartesian form

Let (x,,y,, z)and(x, v, z,) be the coordinates of the pointsAand Brespectively.
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Let a, b ¢, and a, bz,c be the direction ratios of b and b respectively. Then

Aquz )1 -I'('yz _J/l)j_lrzz _Zl)k
b=, e kand b, =m,i I, 1, k

Thegiven linesarecoplanar ifandonly if H}(lelgz ) =0. In the cartesian form,
it can be expressed as
X, "X Yo" B A
a b q |=® . (4)

a b, )

Example 21 Showthat thelines
x+3= y—lzz—S and x+1:y—2 :z—5
3 1 5 -1 2 5
Solution Here,x, =-3,y, =1,z =5,a,=-3,b,=1,¢, =5
xz——l,y2=2,zz=5,a2=—l, b2=2,c2=5
Now consider the determinant

are coplanar.

XX Ve LA 210
a, b a —3 1 5|=%
a, b, G T 2§
Therefore, lines arecoplanar.
11.8 Angle between Two Planes

Definition 2 The angle between two planes is defined as the angle between their
normals (Fig 11.18 (a)). Observe that if 6 isan angle between the two planes, then so
is 180 — 6 (Fig 11.18 (b)). We shall take the acute angle as the angles between
two planes.

ﬂ’"\.\ aogle belwesn e nocmals

[lane 1‘?; _[““;“ &l ,'I\“*.
TN AN
/NG A K

{ & I‘l.u:lt'I {\.___,Ira- I'“,;u_r,;
Ll nuag e L--u.lm:-.ui\

Lhe plum-!

fa)
Fig 11.18
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If n, and 7, are normalsto the planes and 6 be the angle between the planes

Fo, =dand 7. n,=d,.
Then 0 isthe angle betweenthenormalsto the planes drawn from some common
point.

ﬁl'ﬁz

We have, cos 0 = |— =
|n | |n,y|

The planesare perpendicular to each other if 7,. 7, =0 andparallel if

n, isparallel to 7, .

Cartesian form Let 0 be the angle between the planes,
Ax+By+Cz+D =0and Ax+B,y+C,z+D, =0
The direction ratios of the normal to the planes are Al, Bl, C1 and Az, BZ, C2
respectively.
A A, +B; B, +C,C,
JA} + B +C | AZ+BI+CE

Therefore, cos 0 =

1. If the planes are at right angles, then 6 =90° and so cos 6 = 0.
Hence, cos 6 = AlA2 + Ble + ClC2 =0,

2. Ifthe planesare parallel, then i Zi =1,
A2 BZ C2

Example 22 Find the anglebetween the two planes2x +y—2z=5 and3x-6y—-2z=7
using vector method.

Solution Theanglebetween two planes isthe angle between their normals Fromthe
equation of theplanes, the normal vectorsare

Ni=2i+j-2kand N2=37 -6 -2k

i+ j-2k)-(3i—6-2k)
NA+1+4 \J9+36+4

N: - N
INz| [N2|

T herefore cos 0 =

-z

4
= 1| —
Hence 0 = cos (ZJ
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Example 23 Findthe angle between the two planes 3x— 6y +2z=7 and 2x + 2y — 2z =5.

Solution Comparingthegiven equations of the planeswiththe equations
Ax+By+Cz+D =0and A)x+B y+C,z+D,=0

We get A =3,B=-6C=2

A =2,B=2C=-2

3x2+(-6) (2) +(2)(-2)

J(?f +(=6)° +(<2)?) (22 + 2 +(-2)?)
-10 5 53

7x23| 743 2L

cos 0 =

3
T herefore, 0 =cos? (%j

11.9 Distance of a Point from a Plane
Vector form

Consider a point P with position vector g and a plane n, whose equation is
F-n =d(Fig11.19).

’ Z
z £
m, T,
")
Q P
P g
- N’
a N’ N >Y
o : o ! ) (6) u
K-t u ]
X
) . (b)
Fig 11.19

Consider a plane rr, through P parallel tothe plane . T he unit vectornormal to
T, is n.Hence, itsequationis (7 — a)-n=0
ie., rom=a-n

T hus, the distance ON’ ofthis planefromthe origin is|a - 7| . T herefore, the disgance
PQ fromthe plane r_ is (Fig. 11.21(a))

ie., ON-ON'=|d- a°#|
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which isthe length of the perpendicular from apointto the given plane.
We may establish the similar results for (Fig11.19(b)).

1. Iftheeqetionafthedanen isin the form 7 *“N =, where N isnormal
to the plane, then the perpendiculardistance is %-

|d |

The length of the perpendicular from origin Otothe plane 7 *N =¢ is |

2.

(since a =0).

Cartesian form
Let P(x,y,, z) bethe given pointwith position vector a and

Ax+By+Cz=D
be the Cartesian equation of thegiven plane. Then
X4y 4z k

a
N = AlA+B}+C1€
Hence, from Notel, theperpendicular fromP to the plane is
(g i+y, j+z k) (Ai+ Bj+C/€)—D|
\/A2 + B? + C?

Axl‘|'Byl '|'('.Iz1 _Dl
JAZ _|.Bz ‘|‘C2

Example 24 Findthe distance of a point (2, 5,— 3) from the plane

F(6i-3j+2k)=4
Solution Here, g =27 157 =3k, N=6i —3; 12 kandd=4.
Therefore, the diganceof the point (2, 5,— 3) fromthe given planeis

(27 +5)-3k) 6i-3j+2k) -4 |12-15-6-4| 13
T \f36+9+4 7

167 -3]+2k]|
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11.10 Angle between a Line and a Plane

Definition 3 Theande betweena lineandaplaneis  Murmal—

the complement of the angle between the line and g tine
normaltothe plane (Fig 11.20). _ o — VP{,.‘.}_ j
Vector form If the equation of the line is / = 7 *
7 =a+Ab and the equation of the plane is “—— _u'._'-llr
7-ii =d . Then the angle 0 betweenthe line andthe Flim
normalto the planeis Fig 11.20
b-ii
S IR

andso the angle ¢ between the line andthe plane isgiven by 90 — 9, i.e.,
sin (90 —06) = cos O

' in ¢ 7 o= sin™ b
i.e. sing=|—=———|or¢= ==
b |7] ]Izl
Fxample 25 Findtheangle betweenthe line
x+1 P z-3
2 3 6

andthe plane 10 x + 2y — 11z=3.

Solution Let Obe theangle between thelineandthenormalto theplane. Converting the
given equationsintovector form, we have

F=(-i+3k)+A(2i+3j+6k)
and F(107+2)-11k)=3
Here b=2i+3]+6k and 7i=107+2 )11k

(27 +37+6k)-(107 + 2] —11k)
V22 + B 467 107 + 22 4112

sin ¢ =

o . —|i—i ro=sin? 8
“l17x15| " 21_210¢_S 21
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| EXERCISE 11.3|

In each of the followingcases, determine the direction cosinesof thenormal to
theplane andthe digancefrom the origin.

(@ z=2 (b) x+y+z=1

(c) 2x+3y-z=5 (d 5y+8=0

Findthe vector equation of a plane which isat adistance of 7 unitsfrom the
origin and normal tothevector 37 +5 j -6 k

Findthe Cartesian equation of the following planes:
@ 7(+j-k)=2 (b) 7-(27+37- 4k)=1

) Fl(s—20i+@=1t)]+(@2s+t)k]=15

In the following cases, find the coordinates of the foot of the perpendicular

draawn from theorigin.

() 2x+3y+4z-12=0 (b) 3y+4z-6=0

() x+y+z=1 (d 5y+8=0

Findthe vector and cartesian equationsof the planes

(a) that passesthrough the point (1, 0, —2) and the normal to the plane is
i+ .

(b) that passesthrough the point (1,4, 6) andthe normalvector tothe planeis
=27

Findthe equations of the planes that passes through three points.

@ (1,1,-1), (6,4,-5),(-4,-2,3)

(b) (1,1,0),(1,2,1),(-2,2,-1)

Findthe intercepts cut off by the plane 2x + y — z=5.

Findthe equation ofthe plane withintercept 3 on the y-axisandparallel to ZOX
plane.

Find the equation of the plane through the intersection of the planes
3x—y+2z—4=0andx+y+z—2=0andthe point (2, 2, 1).

Findthe vector equation of the plane passingthrough the intersection of the
planes 7 (27 +2 j -3k ) =7,7.(2i +5 j+ 3 k) = 9andthrough thepoint
(2,1, 3).

Find the equation of the plane through the line of intersection of the

planesx +y +z =1 and 2x + 3y + 4z =5 which is perpendicular to the plane
x—y+z=0.
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12. Findthe angle between the planeswhose vector equationsare
F(2i+2j-3k)y=5and 7.(37 -3 +5k)=2
13. In the following cases, determine whether the given planes are parallel or
perpendicular, andin casethey are neither, find the angles betweenthem.
(@) 7x+5y+6z+30=0 and 3x-y-10z+4=0
(b) 2x+y+3z-2=0 andx-2y+5=0
(c) 2x-2y+4z+5=0 and 3x-3y+6z—-1=0
(d 2x-y+3z-1=0 and 2x-y+3z+3=0
() 4x+8y+z-8=0 andy+z-4=0

14. Inthe followingcases, find the distance of each of the given points from the
corresponding given plane.

Point Plane
(a) (0,0,0) 3x—4y+12z=3
(b) (3,-2,1) 2x—-y+2z+3=0
(c) (2,3,-5) x+2y—2z=9
(d (-6,0,0) 2x—3y+6z-2=0

Miscellaneous Examples
Example 26 A linemakes angles o, B3,y and dwiththediagonals of a cube, prove that

4
cos’ o + €c0S* B +cos’y +C0S° 3 = 3

Solution Acubeisarectangular parallelopipedhavingequal length, breadth and height.
Let OADBFEGC be the cube with each side of length « units. (Fig11.21)

The four diagonals are OE, AF, BG and CD. ' ;7(
T he direction cosinesofthediagonal OEwhich
isthe line joining two points O andE are (.0, “)F(o, a, a)
@,0,a0)G
a—0 a0 a0 E(a,a,0)
Jaz _|_az _|712 ’Jaz _bz _|_az ’Ja2_|712 _bz

—>Y
o B, a, 0)
1 1 1 X A(a, 0, 0) D(“& a, 0)

e, = FE

37437 43 Fig 11.21
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L. . . . -1 1 1 1
Similarly, the direction cosines of AF, BG andCD are =, —, ——=;, —,
y 3' 3 3B

2L gL L 2L respectively
V33 T A3 BE '

Let 7, m,n be the direction cosines of thegiven line which makesandles o, B, v, 8
with OE, AF, BG CD, resectively. Then

1 1
cosa = % (I+m+n);cosP = ﬁ(—l+m+n);
1 1
cosy = ﬁ(l—m+n);0088: $(1+m—n) (Why?)

Squaring and adding, we get
cos’a + €c0s? B + cos?y + coS? &

1

=3 [+ m+n )+ (Clamenf ] + (= m+nf+ (+m-n)]
1 4

=§[4(lz+m2+n2)]=§ (@asP+m?*+n?=1)

Example 27 Findtheequation of the plane that contains the point (1,-1, 2) andis
perpendicular to each of the planes 2x+ 3y—2z=5and x + 2y— 3z=8.

Solution The equationoftheplane containingthe given pointis
A(x-1)+B(y+1)+C(z-2)=0 .. (1)
Applying the condition of perpendicularly to the planegiven in (1) withtheplanes
2x +3y—2z=5and x + 2y— 3z =8, we have
2A+3B-2C=0andA+2B-3C=0
Solving these equations, we find A = — 5C and B = 4C. Hence, the recuired
equationis
-5C(x-1)+4C(y+1)+C(z-2)=0
ie. Sx—4y—-z=7
Example 28 Findthe distance between the pointP (6, 5,9) andthe plane determined
by the pointsA(3,-1, 2),B(5,2,4)andC(- 1,-1, 6).
Solution LetA, B, Cbethethree pointsintheplane. Disthefoot of the perpendicular
drawn from a point P to the plane. PDisthe requireddistance to be determined, which

isthe projectionof AP on AB XAC.
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Hence, PD =the dot product of AP with the unit vector along AB XAC.

So AP =37467+7k
PGk

and AB XAC = | 2 3 2/ =127 -16] +12k
4 0 4
3i-47+3k

Unitvectoralong AB XAC Nel
34
i-47+3k

A A ~ 3
(3i+6 j+7k).
J ) \/a

_ 3434
17
Alternatively, find the equation of the plane passing through A, BandC andthen
computethedistance of the point P from the plane.

Example 29 Showthat thelines

Hence PD

x—a+d y-a z-a-d

a—20 o o+ 0o

x—-b+c -b z-b-c
and =2 = are coplanar.

B—v B B+y

Solution

Here x, = a—-d x, = b-c
y,=a y2=b
zl=a+d Zz=b+c
a =o-3 a,=B-vy
b1=oc b2=[3
c,=a+d c,=B+y

Nowconsider thedeterminant
Xo—=Xy Yo—W Zp—Z7 b—c—a+d b-a b+c—a-d
a b a |- o -0 o o+ 9d
a b, Co B-y B B+y
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Addingthird column tothe first column, we get
b—a b-a b+c—-a-d
2| o o o+ 0 =0

B B B+y
Since the first and second columns are identical. Hence, the given two linesare
coplanar.

Example 30 Find the coordinates of the point where the line through the points
A (3,4,1)and B(5, 1, 6) crossesthe XY-plane.

Solution Thevector equation of theline throughthepoints A and Bis
F =34 +k+A[6G-3) +(1-4)]+(6-1)Fk]
ie. F=3i+4j+k+1(21-37+5k) . (1)
Let P be the point where the line AB crosses the XY-plane. Then the position
vector ofthe point Pisoftheform xi +y J.
Thispoint mugt satisfythe equation (1). (Why ?)

ie. Xxi+y = @+20)7 +(4=30) 7+ (L+51)k
Equating the likecoefficients of , jand i ,wehave
x=3+2A
y=4-3A
0=1+5A
Solvingthe above equations, we get
1 23
— and y=—
x Y=<

) ) ) 13 23
Hence, the coordinates of the required point are (? r Oj.

Miscellaneous Exercise on Chapter 11

1. Showthat the linejoiningthe origin to thepoint (2, 1, 1)is perpendicular tothe
line determined by the points(3, 5,-1), (4,3, -1).

2. If ll, m,n, and lz, myn, arethe direction cosines of two mutually perpendicular
lines, showthat the direction cosines of theline perpendicularto both ofthese

are myn, “my ., ngly “hy b, Lm, 71, m
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Find the angle between the lines whose direction ratios are «, b, ¢ and
b-c,c—a,a-b.
Findthe equation ofa lineparallel to x-axis andpassing through the origin.

If the coordinates ofthe points A B, C, D be(1, 2, 3),(4,5,7), (-4, 3,- 6)and
(2,9, 2) respectively, then find the angle between the lines ABand CD.

Ifthelines =2 - ¥=2_273 jg x1_»-1_=2-6
-3 2k 2 3k 1 -5

findthe value of .

Findthe vector equation ofthe line passing through (1, 2, 3)and perpendicularto

areperpendicular,

theplane 7.(i+2j-5k)+9=0.

Findthe equation of theplanepassingthrough (a, b, c) and parallel tothe plane
7o 1 ) =

Findthe shortest distancebetween lines 7=67 +2 j +2 k+ L (i —2 j + 2 k)

and 7 =—4i - k+pn@i-27-2k).
Findthe coordinatesof the point where the line through (5, 1, 6) and (3, 4,1)
crosesthe YZ-plane.

Findthe coordinates of the point where the line through (5, 1, 6) and(3, 4, 1)
crosesthe ZX-plane.

Find the coordinates of the point where the line through (3, - 4, - 5) and
(2, -3, 1) crosses theplane 2x+ y+z=7.

Findthe equation of the plane passing throughthepoint (-1, 3,2) andperpendicular
to each of theplanesx + 2y + 3z=5and 3x+ 3y +z=0.

If the points (1, 1, p) and (- 3, 0, 1) be equidistant from the plane
7+3i 4 j—t2k) 11379, then find the valwe of p.

Findthe equation of the plane passing through the line of intersection of the
planes 7.(7 + j + k)=1and 7-(27+ 3 j — k) + 4 =0 and parallel to x-axis.
IfO be the originandthecoordinatesofP be(1,2,— 3), then findthe equation of
theplane passing through P and perpendicular to OP.

Findthe equation ofthe plane which containsthe lineof intersection of the planes
F-(f+2j+3k)-4=0,7-(27+ ] - k) +5=0andwhich is perpendicular to the
plane 7.(57 +3 j—6k) +8=0.
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19.
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Findthe distance ofthepoint (-1,-5, — 10) from the point of intersection of the
line 7=2i—j+2k+1(3i+4j+2k)andtheplane 7-(7 — j + k) =5.
Findthe vector equation of the line passingthrough (1, 2, 3) andparallel to the
planes 7-(7 — j+2k)=5and 7-(37 + j+ k) =6.

Findthe vector equation of the line passingthrough the point (1, 2,- 4) and
perpendicularto the two lines:

x-8 y+19 z-10 x—15 y-29 z—5.

and = =
3 -16 7 3 8 -5
Prove that if aplane hasthe interceptsa, b, candisatadisance of p unitsfrom
the origin, then iz -‘riz +i2 :iz.
a- b° ¢ p

Choose the correct answer in Exercies22 and 23.

22.

23.

Distance between the two planes: 2x+ 3y+4z=4and 4x+ 6y + 8z=12is

(A) 2 uwnits (B) 4 uwnits (C) 8units (D) % units

The planes: 2x— y+4z=5and5x— 2.5y + 10z= 6 are

(A) Pemendicular (B) Parallel
(C) intersect y-axis (D) passesthrough (0,0,;j
Summary

Direction cosines ofa line are the cosines of the angles made by theline
with the positivedirectionsof the coordinate axes.

If [, m, nare the direction cosines of aline, then 2+ m?+ n®=1.
Direction cosines of aline joiningtwo pointsP(x,,y,, z) and Q(x,, y,, z,) are
Xo "X Vo T % 74

PQ ' PQ ' PQ
where PQ = .\/(xz —x)2 4+ (y,— )P+ (22 —Zl)2
Direction ratios of a line are the numberswhich are proportionalto the
direction cosinesof aline.

If /, m, narethe direction cosinesanda, b, carethe direction ratios of aline
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then

; a b c
= , m = 1 n=

\/az+bz+c2 \/az+bz+c2 Ja2+b2+c2
Skewlines are lines in space which are neither parallel nor intersecting.
They lie in different planes.

Angle between skew lines is the angle between two intersecting lines
drawn fromany point (preferably throughthe origin) parallel to each ofthe
skew lines.

If Zl,ml,nland l,m,n,are thedirection cosines of two lines; and 0 isthe
acute angle between the two lines; then

cosO = |LL,+mm,+nn,)|
If a,b,c, and a,b, c,are the direction ratios of two lines and 0 is the
acute angle between the two lines; then

aa,+b b, +¢c
\/af+ b+ cf \/a§+ bi + &

\ector equationof alinethat passes through the given point whoseposition

cosO =

vector is a and parallel toa given vector p is # = G + A b .
Equation of alinethrougha point (x,,y,,z,) andhaving direction cosines/,m,n is
AT N 24
) m n
T he vectorequation of alinewhich passes through two points whos position

vectorsare G and b is 7 =d + A (b — ).

Cartesian equation of aline that passesthrough two points (x, y,, z)and
SNV 252

Xop=X% =N Z,— 7

If 0 is the acute angle between 7 =g, +1b, and 7 =da, + Lb,, then

(x, ¥, 2,) is

b, -b.
cosf=|—-2
| By | | b, |
If x_xlzy_yl:Z_Zlandx_XZ=y_y2=Z_ZZ
L my n, L m, n,

arethe equations oftwo lines, then the acute angle between thetwo linesis
given by cos© =/ [ +m m,+nn)|
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Shortest distance between two skewlines isthe line segment perpendicular
toboth thelines.
Shortest distance between 7 = %, and 7 =, b, is
(b xb,)-(a, —ay)
| By % b, |

Shortest distance between the lines: 21— = Y =% _ Z7% 4oy
a, by €1

T VT Z T is
a, b, €

@G b, C2
\/(blcz ~ bzcl)2 +(aa, - czal)z +(ab, - a2b1)2

Distance between parallel lines 7 = /% and 7 =z, H.b s

b x(d, - G)
15|

In the vector form, equation of a plane which is at a distance d from the
origin, and 7 isthe unit vector normal to the plane through the origin is
Fei=d.

Equationof a plane whichisat a distance of dfromthe origin andthe direction
cosines of the normal to the plane as/, m, nislx+ my+ nz=d.

The equation of a plane through a point whose position vector is a and

perpendicularto the vector N is (7-ad).N=0.

Equationof aplane perpendicular to a given line with direction ratiosA, B, C

and passing through a given point (x, y,, z)) is
AXx-x)+B@r-y)+C(z-z)=0

Equation of aplane passingthrough three non collinear points (x,, v, z,),
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(x, v, z,) and (x,, y,, z,) is

X=X VY= z-12
Ym% Vo™ T Ao

X3 =X Va— N Zz— 2
\kctor equation of a plane that containsthreenon collinear pointshaving
positionvectors a, b and ¢ is (7—-a) .[(5—&) x(¢-a)]=0

Equation of aplane that cuts thecoordinates axesat (a, 0, 0), (0, 5, 0)and
(0,0,¢)is

£+X+£=1
a b c

\kctor equation of a plane that passes through the intersection of
planes7 -7, =d, and 7 -n, =d, is 7 -(n, + Ani,) =d;, + Ad,, where Aisany
nonzerocongant.

Cartesian equation of a plane that passes through the intersection of two
gven planesA x+B y+C z+D =0and A x+B y+C z+D,=0

is(A,x+B y+Cz+D)+MA,x+B,y+C z+D,)=0.
Twolines 7 = G +Ab and 7 = @, + p b, are coplanar if
(d, = @)- (b x b,) =0
In the cartesianform above lines passingthroughthe points A(x,, y,,z ) and
B (x,,7,2,)
By =2 =01 Zp= 4
y yZ Z ZZ al bl cl

- are coplanar if =0.
@ b, C2

b, G,

In the vector form,if 6 istheangle betweenthe two planes, 7 -7, =d;, and

[}

| 7

Theangle ¢ between the lin

1, |
|17, |

7=a+\bandthe plane 777 = d is

¥-n,=d,, then 6 =cos™

D St
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no= énA

o117

¢ The angle 0 between the planesAx +By +Cz+D, =0 and
A,x+B,y+C, z+D,=0 isgiven by

A A, +B; B, +C, C,
VAL + B + G A3 +B}+CS

cosO =

¢ Thedisance of a point whose position vector is a fromtheplane 7-n=d is
|d —a-n|
¢ Thedistance from apoint (x, y,, z) tothe plane Ax+ By + Cz+ D=01is
Ax +By, +Cz; + D
J A% +B?+C?

—_— e ——



Chapter 12
(LINEAR PROGRAMMING)

+»» The mathematical experience of the student is incomplete if he never had
the opportunity to solve a problem invented by himself. — G. POLYA «¢

12.1 Introduction

In earlier classes, we have discussed systems of linear
equationsand their applicationsin day to day problems. In
Class X1, we have studied linear inequalities and systems
of linear inequalitiesin two variablesand their solutions by
graphical method. Many applications in mathematics
involve systems of inequalities/equations. In this chapter,
we shall apply the systems of linear inequalities/equations
to solvesomeredl life problemsof thetype asgiven below:

A furniture dealer dealsin only two items—tables and
chairs. He has Rs 50,000 to invest and has storage space
of at most 60 pieces. A table costs Rs 2500 and a chair
Rs 500. He estimates that from the sale of one table, he .
can make a profit of Rs 250 and that from the sale of one L. Kantorovich
chair a profit of Rs 75. He wants to know how many tables and chairs he should buy
from the available money so asto maximise histotal profit, assuming that he can sell all
the items which he buys.

Such type of problemswhich seek to maximise (or, minimise) profit (or, cost) form
a general class of problems called optimisation problems. Thus, an optimisation
problem may involve finding maximum profit, minimum cost, or minimum use of
resources etc.

A specid but avery important classof optimisation problemsislinear programming
problem. The above stated optimisation problem isan example of linear programming
problem. Linear programming problems are of much interest because of their wide
applicability inindustry, commerce, management science etc.

Inthischapter, we shall study somelinear programming problemsand their solutions
by graphical method only, though there are many other methods also to solve such
problems.
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12.2 Linear Programming Problem and itsM athematical For mulation

We begin our discussion with the above example of furniture dealer which will further
lead to amathematical formulation of the problemin two variables. In thisexample, we
observe

(i) Thededer caninvest hismoney in buying tablesor chairsor combination thereof.
Further he would earn different profits by following different investment
strategies.

(i) There are certain overriding conditions or constraintsviz., hisinvestment is
limited to amaximum of Rs 50,000 and so is his storage space which isfor a
maximum of 60 pieces.

Suppose he decidesto buy tables only and no chairs, so he can buy 50000 + 2500,
i.e., 20 tables. His profit in this case will be Rs (250 x 20), i.e., Rs 5000.

Suppose he choosesto buy chairsonly and no tables. With hiscapital of Rs 50,000,
he can buy 50000 + 500, i.e. 100 chairs. But he can store only 60 pieces. Therefore, he
isforced to buy only 60 chairs which will give him atotal profit of Rs (60 x 75), i.e.,
Rs 4500.

There are many other possibilities, for instance, he may choose to buy 10 tables
and 50 chairs, as he can store only 60 pieces. Total profit in this case would be
Rs (10 x 250 + 50 x 75), i.e., Rs 6250 and so on.

We, thus, find that the dealer can invest hismoney in different ways and he would
earn different profits by following different investment strategies.

Now the problem is: How should he invest his money in order to get maximum
profit? To answer this question, let ustry to formulate the problem mathematically.

12.2.1 Mathematical formulation of the problem
Let x be the number of tables and y be the number of chairs that the dealer buys.
Obviously, x and y must be non-negative, i.e.,

. : - (@)
0 (Non-negative constraints) Q)
The dealer is constrained by the maximum amount he can invest (Here it is
Rs 50,000) and by the maximum number of items he can store (Here it is 60).
Stated mathematically,
2500x + 500y < 50000 (investment constraint)
or 5x +y <100 .. (3
and X+y <60 (storage constraint) .. (4
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Thedealer wantstoinvest in such away so asto maximise his profit, say, Z which
stated as a function of x and y is given by

Z = 250x + 75y (called objective function) .. (5
Mathematically, the given problems now reducesto:
Maximise Z = 250x + 75y
subject to the constraints:
5x +y <100

X+y<60
x>0, y=>20

So, we haveto maximisethelinear function Z subject to certain conditions determined
by aset of linear inequalitieswith variables as non-negative. There are also some other
problems where we have to minimise a linear function subject to certain conditions
determined by aset of linear inequalitieswith variables as non-negative. Such problems
are caled Linear Programming Problems.

Thus, a Linear Programming Problem is one that is concerned with finding the
optimal value (maximum or minimum value) of alinear function (called objective
function) of several variables (say x andy), subject to the conditionsthat the variables
are non-negative and satisfy a set of linear inequalities (called linear constraints).
The term linear implies that al the mathematical relations used in the problem are
linear relations while the term programming refers to the method of determining a
particular programme or plan of action.

Before we proceed further, we now formally define some terms (which have been
used above) which we shall be using in thelinear programming problems:

Objective function Linear function Z = ax + by, where a, b are constants, which has
to be maximised or minimized is called alinear objective function.

Inthe above example, Z = 250x + 75y isalinear objective function. Variablesx and
y are called decision variables.

Constraints The linear inequalities or equations or restrictions on the variables of a
linear programming problem are called constraints. The conditions x>0,y > 0 are
called non-negativerestrictions. In the above example, the set of inequalities (1) to (4)
are constraints.

Optimisation problem A problem which seeks to maximise or minimise a linear
function (say of two variables x and y) subject to certain constraints as determined by
a set of linear inequalities is called an optimisation problem. Linear programming
problems are special type of optimisation problems. The above problem of investing a
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given sum by thedealer in purchasing chairs and tablesis an exampl e of an optimisation
problem aswell as of alinear programming problem.

Wewill now discuss how to find solutionsto alinear programming problem. Inthis
chapter, we will be concerned only with the graphical method.

12.2.2 Graphical method of solving linear programming problems

In Class X1, we havelearnt how to graph asystem of linear inequalitiesinvolving two
variables x and y and to find its solutions graphically. Let us refer to the problem of
investment in tablesand chairsdiscussed in Section 12.2. Wewill now solvethisproblem
graphically. Let usgraph the constraints stated aslinear inequalities:

5x +y <100 - ()
X +y<60 .. (2
x>0 .. (3)
y=>0 .. (4

The graph of this system (shaded region) consists of the points common to al half
planes determined by the inequalities (1) to (4) (Fig 12.1). Each point in this region
represents a feasible choice open to the dealer for investing in tables and chairs. The
region, therefore, is called the feasible region for the problem. Every point of this
region is called a feasible solution to the problem. Thus, we have,

Feasible region The common region determined by all the constraints including
non-negative constraintsx, y> 0 of alinear programming problemiscalled thefeasible
region (or solution region) for the problem. In Fig 12.1, the region OABC (shaded) is
the feasible region for the problem. The region other than feasible regionis called an
infeasible region.

Feasible solutions Points within and on the
boundary of the feasible region represent
feasible solutions of the constraints. In
Fig 12.1, every point within and on the
boundary of the feasible region OABC
represents feasible solution to the problem.
For example, the point (10, 50) isafeasible
solution of the problem and so are the points
(0, 60), (20, 0) etc.

Any point outside the feasible region is
called an infeasible solution. For example,
the point (25, 40) is an infeasible sol ution of Y 5x+p=100 x+y=60
the problem. Fig12.1
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Optimal (feasible) solution: Any point in the feasible region that gives the optimal
value (maximum or minimum) of the objective functioniscalled an optimal solution.

Now, we seethat every pointinthefeasibleregion OABC satisfiesdl the constraints
asgivenin (1) to (4), and since there areinfinitely many points, it isnot evident how
we should go about finding apoint that gives amaximum value of the objectivefunction
Z = 250x + 75y. To handle this situation, we use the following theorems which are
fundamental in solving linear programming problems. The proofs of these theorems
are beyond the scope of the book.

Theorem 1 Let R be the feasible region (convex polygon) for alinear programming
problem and let Z = ax + by be the objective function. When Z has an optimal value
(maximum or minimum), wherethe variablesx and y are subject to constraints described
by linear inequalities, this optimal value must occur at a corner point* (vertex) of the
feasibleregion.

Theorem 2 Let R be the feasible region for alinear programming problem, and let
Z = ax + by be the objective function. If R isbounded**, then the objective function
Z has both a maximum and a minimum value on R and each of these occurs at a
corner point (vertex) of R.

Remark If R is unbounded, then a maximum or a minimum value of the objective
function may not exist. However, if it exists, it must occur at a corner point of R.
(By Theorem 1).

In the above exampl e, the corner points (vertices) of the bounded (feasible) region
are: O, A, B and Canditiseasy tofind their coordinates as (0, 0), (20, 0), (10, 50) and
(O, 60) respectively. Let us now compute the values of Z at these points.

We have
Vertex of the Corresponding value
Feasible Region of Z (in Rs)
0O (0,0 0
C(0,60) 4500 _
B (10,50) 6250 ¢— | Maximum
A (20,0 5000

* A corner point of afeasibleregionisapoint in the region whichistheintersection of two boundary lines.

** A feasibleregion of asystem of linear inequalitiesis said to be bounded if it can be enclosed withina
circle. Otherwise, it is called unbounded. Unbounded means that the feasible region does extend
indefinitely in any direction.
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We observe that the maximum profit to the dealer results from the investment
strategy (10, 50), i.e. buying 10 tables and 50 chairs.

Thismethod of solving linear programming problem isreferred as Cor ner Point
M ethod. The method comprises of the following steps:

1. Find the feasible region of the linear programming problem and determine its
corner points (vertices) either by inspection or by solving the two equations of
thelinesintersecting at that point.

2. Evauate the abjective function Z = ax + by at each corner point. Let M and m,
respectively denote the largest and smallest values of these points.
3. (i) When the feasible region is bounded, M and m are the maximum and
minimum valuesof Z.
(i) In case, the feasible region is unbounded, we have:

4. (a) M is the maximum value of Z, if the open half plane determined by
ax + by > M has no point in common with the feasible region. Otherwise, Z
has no maximum value.

(b) Similarly, misthe minimum valueof Z, if the open half plane determined by
ax + by < mhas no point in common with the feasible region. Otherwise, Z
has no minimum value.
We will now illustrate these steps of Corner Point Method by considering some
examples:.
Example 1 Solvethefollowing linear programming problem graphically:

MaximiseZ =4x +y . (D
subject to the constraints:

Xx+y< 50 .. (2

X+y< 90 .. (3)

x>20,y>0 .. (4

Solution Theshaded regionin Fig 12.2 isthefeasible region determined by the system
of constraints (2) to (4). We observe that the feasible region OABC is bounded. So,
we now use Corner Point Method to determine the maximum value of Z.

The coordinates of the corner points O, A, B and C are (0, 0), (30, 0), (20, 30) and
(O, 50) respectively. Now we evaluate Z at each corner point.
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Corner Point | Corresponding value
of Z
(0,0) 0
(30,0) 120 €— |Maximum
(20, 30) 110
(0, 50) 50
X' o 10 20 \40 Nm X
Y A(30,0) x+y=50
Fig12.2
Hence, maximum value of Z is 120 at the point (30, 0).
Example 2 Solvethefollowing linear programming problem graphically:
MinimiseZ =200 x + 500y - (D)
subject to the constraints:
Xx+2y =10 - (2
X+4y <24 .. (3
x20,y20 )

Solution The shaded regionin Fig 12.3 isthe feasible region ABC determined by the
system of constraints (2) to (4), which is bounded. The coordinates of corner points

X Corner Point | Corresponding value
T of Z
NIC(0,6)
(0,5) 2500
DN (4,3) 2300 €<— [Minimum
4- (0, 6) 3000
3 -,
2 4=
1+ (10,0)
o — —t— f d X
! 4 56 L X+ =10
Y 3x+dy=124

Fig 12.3
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A, Band Care(0,5), (4,3) and (0,6) respectively. Now we evaluate Z = 200x + 500y
at these points.

Hence, minimum value of Z is2300 attained at the point (4, 3)
Example 3 Solvethefollowing problem graphically:

Minimiseand Maximise Z = 3x + 9y . (D
subject to the constraints: X+ 3y<60 - (2
X +y=>10 - (3)

X<y .. (@

x=20,y=>20 ... ()

Solution First of al, let usgraph thefeasible region of the system of linear inequalities
(2) to (5). Thefeasible region ABCD isshown in the Fig 12.4. Note that theregionis
bounded. The coordinates of the corner pointsA, B, Cand D are (0, 10), (5, 5), (15,15)
and (0, 20) respectively.

Corner Corresponding value of
Y Point Z=3x+09y
A (0, 10) )
B (5, 5) 60 <&— Minimum
C (15, 15) 180) ,  |Madmum
15 ’ C(15,15) D (0, 20) 18 (Multiple
optimal
(0’;0, -3 60,0) solutions)

(10,0) x+3y=60
x+y=10

Fig 12.4

We now find the minimum and maximum value of Z. From the table, we find that
the minimum value of Z is 60 at the point B (5, 5) of the feasible region.

The maximum value of Z on the feasible region occurs at the two corner points
C (15, 15) and D (0, 20) and it is 180 in each case.

Remark Observethat in the above example, the problem has multiple optimal solutions
at the corner points C and D, i.e. the both points produce same maximum value 180. In
such cases, you can seethat every point on the line segment CD joining the two corner
points C and D also give the same maximum value. Sameisalso truein the caseif the
two points produce same minimum val ue.
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Example 4 Determine graphically the minimum value of the objective function

Z =—50x + 20y .. (1)
subject to the constraints:
2X—-y>-5 .. (2)
3X+y=>3 - (3
2x —3y<12 .. (4)
Xx>20,y>0 ... (5)

Solution First of all, let usgraph the feasible region of the system of inequalities (2) to
(5). The feasible region (shaded) is shown in the Fig 12.5. Observe that the feasible
region isunbounded.

We now evaluate Z at the corner points.

Corner Point | Z = —50x + 20y

(0,5) 100

oAy (0,3) 60
(1,0) -50
(6,0) —300 &— |smallest

Y 278910 'S
¥ (6,0)
3x+y=3
Fig 12.5

From this table, we find that — 300 is the smallest value of Z at the corner point
(6, 0). Can we say that minimum value of Z is — 3007 Note that if the region would
have been bounded, this smallest value of Z isthe minimum value of Z (Theorem 2).
But here we see that the feasible region is unbounded. Therefore, — 300 may or may
not be the minimum value of Z. To decide thisissue, we graph the inequality

—50x + 20y < — 300 (see Step 3(ii) of corner Point Method.)
i.e, —5x+2y<-30
and check whether the resulting open half plane has points in common with feasible

region or not. If it has common points, then —300 will not be the minimum value of Z.
Otherwise, =300 will be the minimum value of Z.
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As shown in the Fig 12.5, it has common points. Therefore, Z = -50 x + 20 y
has no minimum value subject to the given constraints.

In the above example, can you say whether z=— 50 x + 20 y has the maximum
value 100 at (0,5)? For this, check whether the graph of —50 x + 20y > 100 has points
in common with the feasible region. (Why?)

Example 5 Minimise Z = 3x + 2y

subject to the constraints:
X+y=>8 - (D)
3x+5y<15 .. (2
x>20,y>0 .. (3)

Solution Let usgraphtheinequalities (1) to (3) (Fig 12.6). Isthereany feasible region?
Why is s0?

From Fig 12.6, you can see that
there is no point satisfying all the
constraints simultaneously. Thus, the
problemishaving nofeasibleregionand
hence no feasible solution.

Remar ks From the exampleswhichwe
have discussed so far, we notice some
general featuresof linear programming
problems:
(i) The feasible region is aways a
convex region.

Fig 12.6

(i) The maximum (or minimum)
solution of the objective function occurs at the vertex (corner) of the feasible
region. If two corner points produce the same maximum (or minimum) value
of the objective function, then every point on the line segment joining these
points will also give the same maximum (or minimum) value.

EXERCISE 12.1|

Solvethefollowing Linear Programming Problemsgraphically:
1. MaximiseZ = 3x + 4y

subject to the constraints: x +y<4,x > 0,y >0.
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2. MinimiseZ=-3x+4y
subjecttox +2y<8,3x+2y<12, x 2 0,y=0.
3. MaximiseZ = 5x + 3y
subject to 3x + 5y <15,5x+2y<10,x >0,y >0.
4. MinimiseZ = 3x + by
suchthatx+3y >3, x+y >2,x,y>0.
5. MaximiseZ = 3x+ 2y
subject tox + 2y <10, 3x +y <15, X,y > 0.
6. MinimiseZ=x+2y
subjectto2x+y>3,x+2y>6,%,y=>0.
Show that the minimum of Z occurs at more than two points.
7. Minimiseand MaximiseZ =5x+ 10y
subjecttox + 2y <120, x+y=>60,x—-2y>0,x,y=0.
8. Minimiseand MaximiseZ = x + 2y
subject to x + 2y > 100, 2x—y <0, 2x +y < 200; x, y = 0.
9. Maximise Z =—x + 2y, subject to the constraints:
X223, X+y=>5x+2y>6,y=>0.
10. MaximiseZ =x+Yy, subjecttox—y<-1,x+y< 0, X,y >0.

12.3 Different Typesof Linear Programming Problems
A few important linear programming problems are listed bel ow:

1. Manufacturing problems|n these problems, we determine the number of units
of different products which should be produced and sold by a firm
when each product requires a fixed manpower, machine hours, labour hour per
unit of product, warehouse space per unit of the output etc., in order to make
maximum profit.

2. Diet problems In these problems, we determine the amount of different kinds
of constituents/nutrients which should beincluded in adiet so asto minimisethe
cost of the desired diet such that it contains a certain minimum amount of each
constituent/nutrients.

3. Transportation problems In these problems, we determine a transportation

schedule in order to find the cheapest way of transporting a product from
plants/factories situated at different locations to different markets.
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Let us now solve some of these types of linear programming problems:

Example 6 (Diet problem): A dietician wishes to mix two types of foods in such a
way that vitamin contents of the mixture contain atleast 8 units of vitamin A and 10
unitsof vitamin C. Food ‘I’ contains 2 units/kg of vitamin A and 1 unit/kg of vitamin C.
Food ‘II’ contains 1 unit/kg of vitamin A and 2 units/kg of vitamin C. It costs
Rs 50 per kg to purchase Food ‘I’ and Rs 70 per kg to purchase Food ‘II’. Formulate
this problem asalinear programming problem to minimise the cost of such amixture.

Solution Let the mixture contain x kg of Food ‘1" and 'y kg of Food ‘11’. Clearly, x> 0,
y > 0. We make the following table from the given data:

Resources Food Requirement
I I

x)
VitaminA 2 1 8
(unitgkg)
VitaminC 1 2 10
(unitgkg)
Cost (Re/kg) | 50 70

Since the mixture must contain at least 8 units of vitamin A and 10 units of
vitamin C, we have the constraints:

2x+y>8
X+ 2y =10
Total cost Z of purchasing x kg of food ‘I’ and y kg of Food ‘II" is
Z =50x + 70y
Hence, the mathematical formulation of the problemiis:
Minimise Z =50x + 70y .. (D)
subject to the constraints:
2x+y>8 .. (2
X+ 2y>10 .. (3
X,y=0 .. (4

Let us graph the inequalities (2) to (4). The feasible region determined by the
system is shown in the Fig 12.7. Here again, observe that the feasible region is
unbounded.
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Let us evaluate Z at the corner points A(0,8), B(2,4) and C(10,0).

Y
N
Corner Point | Z =50x + 70y
(0,8) 560
249 380 &— | Minimum
(10,0) 500
Y - ‘.\’ . C :
O 2 /\ 6 ™ X2
X 40 (10,0
2x+y=38
Fig12.7

In the table, we find that smallest value of Z is 380 at the point (2,4). Can we say
that the minimum value of Z is 3807 Remember that the feasible region is unbounded.
Therefore, we have to draw the graph of the inequality

50x + 70y < 380 i.e, 5x+7y<38

to check whether the resulting open half plane has any point common with the feasible
region. From the Fig 12.7, we see that it has no pointsin common.

Thus, the minimum value of Z is 380 attained at the point (2, 4). Hence, the optimal
mixing strategy for the dietician would beto mix 2 kg of Food ‘I’ and 4 kg of Food ‘117,
and with this strategy, the minimum cost of the mixture will be Rs 380.

Example 7 (Allocation problem) A cooperative society of farmers has 50 hectare
of land to grow two crops X and Y. The profit from crops X and Y per hectare are
estimated as Rs 10,500 and Rs 9,000 respectively. To control weeds, aliquid herbicide
hasto be used for crops X and Y at rates of 20 litresand 10 litres per hectare. Further,
no morethan 800 litres of herbicide should be used in order to protect fishand wild life
using apond which collectsdrainage from thisland. How much land should be allocated
to each crop so as to maximise the total profit of the society?

Solution Let x hectare of land be allocated to crop X and y hectareto crop Y. Obviousdly,
x=0,y>0.

Profit per hectare on crop X = Rs10500

Profit per hectare on crop Y = Rs9000

Therefore, total profit Rs (10500x + 9000y)
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The mathematical formulation of the problem isasfollows:

Maximise Z = 10500 x + 9000y
subject to the constraints:
X+y <50 (constraint related to land) .. (D)
20x + 10y < 800 (constraint related to use of herbicide)
ie. 2X+y<80 .. (2
x=20,y=>0 (non negative constraint) .. (3)

Let us draw the graph of the system of inequalities (1) to (3). The feasible region
OABC isshown (shaded) inthe Fig 12.8. Observethat thefeasible regionisbounded.

The coordinates of the corner points O, A, B and C are (0, 0), (40, 0), (30, 20) and
(O, 50) respectively. Let us evaluate the objective function Z = 10500 x + 9000y at
these verticesto find which one gives the maximum profit.

Y (0,50 Corner Point| Z = 10500x + 9000y
B 0(0, 0) 0
40 A (40, 0) 420000
301 B (30, 20) 495000 ¢— [Maximum
201 C(0,50) 450000
10 A (40,0)
X% 10 20 30 \SW p
Y x+y=50
Fig12.8

Hence, the society will get the maximum profit of Rs 4,95,000 by allocating 30
hectares for crop X and 20 hectares for crop Y.

Example 8 (Manufacturing problem) A manufacturing company makestwo models
A and B of a product. Each piece of Model A requires 9 labour hours for fabricating
and 1 labour hour for finishing. Each piece of Model B requires 12 labour hours for
fabricating and 3 1abour hoursfor finishing. For fabricating and finishing, the maximum
labour hours available are 180 and 30 respectively. The company makes a profit of
Rs 8000 on each piece of model A and Rs 12000 on each piece of Model B. How many
piecesof Model A and Maodel B should be manufactured per week to realise amaximum
profit? What is the maximum profit per week?
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Solution Suppose x isthe number of pieces of Model A andy isthe number of pieces
of Model B. Then

Total profit (in Rs) = 8000 x + 12000 y

Let Z = 8000 x + 12000y
We now have the following mathematical model for the given problem.
Maximise Z = 8000 x + 12000 y - ()
subject to the constraints:
Ox + 12y <180 (Fabricating constraint)
i.e 3x+4y <60 - (2
x+3y<30 (Finishingconstraint) .. (3
x>20,y=>20 (non-negative constraint) .. (4)

Thefeasibleregion (shaded) OABC determined by thelinear inequalities(2) to (4)
isshown in the Fig 12.9. Note that the feasible region is bounded.

3x+4y=60 20

X" X
4 20,0) x+3y=30
Fig12.9
Let us evaluate the objective function Z at each corner point as shown below:
Corner Point Z =8000x + 12000y
0(0,0) 0
A (20, 0) 160000
B (12, 6) 168000 €— | Maximum
C (0, 10) 120000

We find that maximum value of Z is 1,68,000 at B (12, 6). Hence, the company
should produce 12 pieces of Model A and 6 pieces of Model B to realise maximum
profit and maximum profit then will be Rs 1,68,000.
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EXERCI SE 12.2|

Reshmawishesto mix two types of food P and Q in such away that the vitamin
contents of the mixture contain at least 8 units of vitamin A and 11 units of
vitamin B. Food P costs Rs 60/kg and Food Q costs Rs 80/kg. Food P contains
3 unitg/kg of Vitamin A and 5 units/ kg of Vitamin B while food Q contains
4 unitg’kg of Vitamin A and 2 unitg’kg of vitamin B. Determine the minimum cost
of the mixture.

Onekind of cake requires 200g of flour and 25¢ of fat, and another kind of cake
requires 100g of flour and 50g of fat. Find the maximum number of cakeswhich
can be made from 5kg of flour and 1 kg of fat assuming that thereis no shortage
of the other ingredients used in making the cakes.

. A factory makestennisrackets and cricket bats. A tennis racket takes 1.5 hours

of machinetime and 3 hours of craftman’stimein its making while acricket bat
takes 3 hour of machinetimeand 1 hour of craftman’stime. In aday, the factory
has the availability of not more than 42 hours of machine time and 24 hours of
craftsman’s time.

(i) What number of rackets and bats must be made if the factory isto work
at full capacity?

(i) If the profit on aracket and on abat is Rs 20 and Rs 10 respectively, find
the maximum profit of the factory when it works at full capacity.

. A manufacturer produces nuts and bolts. It takes 1 hour of work on machine A

and 3 hours on machine B to produce a package of nuts. It takes 3 hours on
machine A and 1 hour on machine B to produce a package of bolts. He earns a
profit of Rs17.50 per package on nuts and Rs 7.00 per package on bolts. How
many packages of each should be produced each day so as to maximise his
profit, if he operates his machines for at the most 12 hours a day?

. A factory manufactures two types of screws, A and B. Each type of screw

requires the use of two machines, an automatic and a hand operated. It takes
4 minutes on the automatic and 6 minutes on hand operated machines to
manufacture a package of screws A, while it takes 6 minutes on automatic and
3 minutes on the hand operated machines to manufacture a package of screws
B. Each machineisavailablefor at the most 4 hourson any day. The manufacturer
can sell a package of screws A at a profit of Rs 7 and screws B at a profit of
Rs 10. Assuming that he can sell al the screws he manufactures, how many
packages of each type should the factory owner produce in a day in order to
maximise his profit? Determine the maximum profit.
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A cottage industry manufactures pedestal lamps and wooden shades, each
requiring the use of agrinding/cutting machine and asprayer. It takes 2 hourson
grinding/cutting machine and 3 hours on the sprayer to manufacture a pedestal
lamp. It takes 1 hour on the grinding/cutting machine and 2 hours on the sprayer
to manufacture a shade. On any day, the sprayer is available for at the most 20
hours and the grinding/cutting machinefor at the most 12 hours. The profit from
the sale of alamp is Rs 5 and that from a shade is Rs 3. Assuming that the
manufacturer can sell all the lamps and shades that he produces, how should he
schedulehisdaily productionin order to maximise hisprofit?

A company manufactures two types of novelty souvenirs made of plywood.
Souvenirs of type A require 5 minutes each for cutting and 10 minutes each for
assembling. Souvenirs of type B require 8 minutes each for cutting and 8 minutes
each for assembling. There are 3 hours 20 minutes available for cutting and 4
hours for assembling. The profit is Rs 5 each for type A and Rs 6 each for type
B souvenirs. How many souvenirs of each type should the company manufacture
in order to maximise the profit?

A merchant plansto sell two types of personal computers—adesktop model and
aportablemodel that will cost Rs 25000 and Rs 40000 respectively. He estimates
that the total monthly demand of computerswill not exceed 250 units. Determine
the number of units of each type of computerswhich the merchant should stock
to get maximum profit if he doesnot want to invest more than Rs 70 lakhsand if
his profit on the desktop model is Rs 4500 and on portable model is Rs 5000.

A dietisto contain at least 80 units of vitamin A and 100 units of minerals. Two
foods F, and F, are available. Food F, costs Rs 4 per unit food and F, costs
Rs 6 per unit. One unit of food F, contains 3 units of vitamin A and 4 units of
minerals. One unit of food F, contains 6 units of vitamin A and 3 unitsof minerals.
Formulatethisasalinear programming problem. Find the minimum cost for diet
that consists of mixture of these two foods and al so meetsthe minimal nutritional
requirements.

There aretwo types of fertilisers F, and F,. F, consists of 10% nitrogen and 6%
phosphoric acid and F, consists of 5% nitrogen and 10% phosphoric acid. After
testing the soil conditions, afarmer finds that she needs atleast 14 kg of nitrogen
and 14 kg of phosphoric acid for her crop. If F, costs Rs 6/kg and F, costs
Rs 5/kg, determine how much of each type of fertiliser should be used so that
nutrient requirements are met at a minimum cost. What is the minimum cost?
The corner pointsof the feasible region determined by the following system of
linear inequalities:

2x+y <10, x+ 3y <15 x,y=0are (0, 0), (5 0), (3, 4 and (0, 5). Let
Z = px + qy, where p, g > 0. Condition on p and g so that the maximum of Z
occurs at both (3, 4) and (0, 5) is

(A) p=q (B) p=2q ©) p=3 (D) a=3p
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Miscellaneous Examples

Example 9 (Diet problem) A dietician has to develop a special diet using two foods
P and Q. Each packet (containing 30 g) of food P contains 12 units of calcium, 4 units
of iron, 6 unitsof cholesterol and 6 unitsof vitaminA. Each packet of the same quantity
of food Q contains 3 unitsof calcium, 20 unitsof iron, 4 unitsof cholesterol and 3 units
of vitaminA. Thediet requires atleast 240 units of calcium, atleast 460 unitsof iron and
at most 300 units of cholesterol. How many packets of each food should be used to
minimisetheamount of vitaminA inthe diet?What isthe minimum amount of vitaminA?

Solution Let x and y bethe number of packets of food Pand Q respectively. Obviously
x>0, y>0. Mathematical formulation of the given problem isasfollows:
Minimise Z=6x+ 3y (vitamin A)

subject to the constraints
12x + 3y > 240 (constraint on calcium), i.e. 4x +y >80 . (D
4x + 20y > 460 (constraint oniron), i.e. X + 5y > 115 - (2
6x + 4y < 300 (constraint on cholesteral), i.e. 3x + 2y < 150 .. (3)

x>20,y=>0 .. (4
Let us graph theinequalities (1) to (4).

The feasible region (shaded) determined by the constraints (1) to (4) is shownin
Fig 12.10 and notethat it is bounded.

x+5y=115

=+ =
4x+y =80 3x+2y=150

Fig 12.10
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The coordinates of the corner pointsL, M and N are (2, 72), (15, 20) and (40, 15)
respectively. Let us evaluate Z at these points:

Corner Point Z=6x+3y

(2,72) 228

(15, 20) 150 < Minimum
(40, 15) 285

Fromthetable, wefind that Z isminimum at the point (15, 20). Hence, the amount
of vitamin A under the constraints given in the problem will be minimum, if 15 packets
of food P and 20 packets of food Q are used in the special diet. The minimum amount
of vitamin A will be 150 units.

Example 10 (Manufacturing problem) A manufacturer has three machines I, 11
and Il installed in his factory. Machines | and |l are capable of being operated for
at most 12 hours whereas machine |11 must be operated for atleast 5 hours aday. She
produces only two items M and N each requiring the use of al the three machines.

The number of hours required for producing 1 unit of each of M and N on the three
machinesare giveninthefollowing table:

Items| Number of hours required on machines

I I 1l
M 1 2 1
N 2 1 1.25
She makes a profit of Rs 600 and Rs 400 on items M and N respectively. How many

of each item should she produce so asto maximise her profit assuming that she can sell
al theitemsthat she produced? What will be the maximum profit?

Solution Let x and y be the number of items M and N respectively.
Total profit on the production = Rs (600 x + 400 y)

Mathematical formulation of the given problemisasfollows:
Maximise Z =600 x + 400y

subject to the constraints:

X + 2y < 12 (constraint on Machinel) - (1)

2x +y < 12 (constraint on Machine I1) .. (2
5

X + 1 y > 5 (constraint on Machine 1) )]

x =20, y20 .. (4
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Let us draw the graph of constraints (1) to (4). ABCDE is the feasible region
(shaded) as shown in Fig 12.11 determined by the constraints (1) to (4). Observe that
the feasible region is bounded, coordinates of the corner pointsA, B, C, D and E are

(5,0) (6, 0), (4, 4), (O, 6) and (0, 4) respectively.

Fig 12.11

Let us evaluate Z = 600 x + 400 y at these corner points.

Cornerpoint | Z=600Xx + 400y
(5,0) 3000
(6,0) 3600
(4,4 4000 €— | Maximum
(0,6) 2400
0,4) 1600

We see that the point (4, 4) is giving the maximum value of Z. Hence, the
manufacturer has to produce 4 units of each item to get the maximum profit of Rs 4000.

Example 11 (Transportation problem) There are two factories located one at
place P and the other at place Q. From these locations, a certain commodity isto be
delivered to each of the three depots situated at A, B and C. The weekly requirements
of the depots are respectively 5, 5 and 4 units of the commodity while the production
capacity of the factories at P and Q are respectively 8 and 6 units. The cost of
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transportation per unitisgiven below:

From/To Cost (in Rs)
A B C
P 160 100 150
Q 100 120 100

How many units should be transported from each factory to each depot in order that
the transportation cost is minimum. What will be the minimum transportation cost?

Solution The problem can be explained diagrammatically asfollows (Fig 12.12):

Let x units and y units of the commadity be transported from the factory at P to
the depots at A and B respectively. Then (8 —x —y) unitswill be transported to depot
at C (Why?) Factory

Rs100 .,

) 4

B
Depot @9 Depot @ Depot
D
S
S
s 100 & ©

D
\Qb/
Factory
Fig 12.12
Hence, we have x>20,y>0 and 8-x-y=>0
i.e. Xx20,y>0 and x+y<8

Now, the weekly requirement of the depot at A is 5 units of the commaodity. Since
X units are transported from the factory at P, the remaining (5 — X) units need to be
transported from the factory at Q. Obviously, 5—x>0, i.e. X< 5.

Similarly, (5-y) and 6 —(5—x+5-Y) = x +y—4 unitsareto be transported from
the factory at Q to the depots at B and C respectively.
Thus, 5-y>0, x+y—-42>0
i.e y<5, x+y> 4
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Total transportation cost Z is given by
Z=160x+100y+100(5-x)+120(5-y) +100 (x +y—4) + 150 (8 = x —Y)

=10 (x—7y+ 190) Y
Therefore, the problem reduces to 1 x=5
Minimise Z = 10 (x— 7y + 190) t;\ F
subject to the constraints: xry 7<6 _N,S)
x>0,y>0 ) < BOSNE >y =3

A
X+y<8 .. (2 A 4)}' D(5,3)
X<5 .. (3) sl (5,0)
y<5h .. (4 ,
and X+y>4 .. (5) ol ﬁ% Nﬂ >X
The shaded region ABCDEF i; F(4,0) N x+y=8
represented by the constraints (1) to
(5) isthefeasibleregion (Fig 12.13). Fig 12.13
Observe that the feasible region is bounded. The coordinates of the corner points

of the feasible region are (0, 4), (0, 5), (3, 5), (5, 3), (5, 0) and (4, 0).
Let us evaluate Z at these points.

Corner Point | Z=10(x—7y + 190)
(0,4) 1620
(0,5) 1550 <«— Minimum
(3,5 1580
(5,3) 1740
(5,0 1950
(4,0) 1940

From the table, we see that the minimum value of Z is 1550 at the point (0, 5).

Hence, the optimal transportation strategy will beto deliver 0, 5 and 3 unitsfrom
thefactory at P and 5, 0 and 1 units from the factory at Q to the depotsat A, B and C
respectively. Corresponding to this strategy, the transportati on cost would be minimum,
i.e, Rs1550.

Miscellaneous Exercise on Chapter 12

1. Referto Example 9. How many packets of each food should be used to maximise
the amount of vitamin A inthediet? What isthe maximum amount of vitamin A
inthediet?
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A farmer mixes two brands P and Q of cattle feed. Brand P, costing Rs 250 per
bag, contains 3 units of nutritional element A, 2.5 units of element B and 2 units
of element C. Brand Q costing Rs 200 per bag contains 1.5 units of nutritional
element A, 11.25 units of element B, and 3 units of element C. The minimum
requirementsof nutrientsA, B and C are 18 units, 45 unitsand 24 unitsrespectively.
Determine the number of bags of each brand which should be mixed in order to
produce amixture having aminimum cost per bag? What isthe minimum cost of
the mixture per bag?

A dietician wishesto mix together two kinds of food X and Y in such away that
the mixture contains at least 10 units of vitamin A, 12 units of vitamin B and
8 units of vitamin C. The vitamin contents of one kg food is given below:

Food Vitamin A [ Vitamin B | Vitamin C
X 1 2 3
Y 2 2 1

One kg of food X costs Rs 16 and one kg of food Y costs Rs 20. Find the least
cost of the mixture which will produce the required diet?

A manufacturer makes two types of toys A and B. Three machines are needed
for this purpose and the time (in minutes) required for each toy on the machines
isgiven below:

Types of Toys M achines
I I [l
A 12 18 6
B 6 0 9

Each machine is available for a maximum of 6 hours per day. If the profit on
each toy of typeA isRs 7.50 and that on each toy of type B isRs 5, show that 15
toysof typeA and 30 of type B should be manufactured in aday to get maximum
profit.

An aeroplane can carry a maximum of 200 passengers. A profit of Rs 1000 is
made on each executive class ticket and a profit of Rs 600 is made on each
economy class ticket. The airline reserves at least 20 seats for executive class.
However, at |east 4 times as many passengers prefer to travel by economy class
than by the executive class. Determine how many tickets of each type must be
sold in order to maximisethe profit for the airline. What isthe maximum profit?
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6. Two godowns A and B have grain capacity of 100 quintals and 50 quintals
respectively. They supply to 3 ration shops, D, E and F whose requirements are
60, 50 and 40 quintals respectively. The cost of transportation per quintal from
the godowns to the shops are given in the following table:

Transportation cost per quintal (in Rs)
From/To A B
D 6 4
E 3 2
F 2.50 3

How should the supplies be transported in order that the transportation cost is
minimum?What isthe minimum cost?

7. Anoil company hastwo depots A and B with capacities of 7000 L and 4000 L
respectively. The company is to supply oil to three petrol pumps, D, E and F
whose requirements are 4500L, 3000L and 3500L respectively. The distances
(inkm) between the depots and the petrol pumpsisgiven in thefollowing table:

Distance in (km.)
From / To A B
D i 3
E 6 4
F 3 2

Assuming that the transportation cost of 10 litres of oil is Re 1 per km, how
should thedelivery be scheduled in order that the transportation cost is minimum?
What isthe minimum cost?

8. Afruit grower can usetwo typesof fertilizer in hisgarden, brand P and brand Q.
Theamounts (inkg) of nitrogen, phosphoric acid, potash, and chlorinein abag of
each brand are given in the table. Tests indicate that the garden needs at |east
240 kg of phosphoric acid, at least 270 kg of potash and at most 310 kg of
chlorine.

If the grower wants to minimise the amount of nitrogen added to the garden,
how many bags of each brand should be used? What is the minimum amount of
nitrogen added in the garden?
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kg per bag
Brand P | Brand Q
Nitrogen 3 315
Phosphoric acid 1 2
Potash 3 15
Chlorine 15 2

Refer to Question 8. If the grower wants to maximise the amount of nitrogen
added to the garden, how many bags of each brand should be added? What is
the maximum amount of nitrogen added?

A toy company manufacturestwo typesof dolls, A and B. Market testsand available
resources haveindicated that the combined production level should not exceed 1200
dolls per week and the demand for dolls of type B isat most half of that for dolls of
typeA. Further, the production level of dolls of type A can exceed three timesthe
production of dollsof other typeby at most 600 units. If the company makes profit of
Rs12 and Rs 16 per doll respectively ondollsA and B, how many of each should be
produced weekly in order to maximisethe profit?

Summary

A linear programming problemisonethat isconcerned with finding the optimal
value (maximum or minimum) of alinear function of several variables(called
objective function) subject to the conditions that the variables are
non-negative and satisfy aset of linear inequalities(called linear constraints).
Variables are sometimes called decision variables and are non-negative.

A few important linear programming problemsare:
(i) Dietproblems
(i) Manufacturing problems
(iii) Transportation problems
The common region determined by all the constrai ntsincluding the non-negative

constraintsx> 0, y= 0 of alinear programming problem s called thefeasible
region (or solution region) for the problem.

Points within and on the boundary of the feasible region represent feasible
solutions of the constraints.

Any point outside the feasible region is an infeasible solution.
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¢ Any point in the feasible region that gives the optimal value (maximum or
minimum) of the objective function is called an optimal solution.

¢ The following Theorems are fundamental in solving linear programming
problems:
Theorem 1 Let R be the feasible region (convex polygon) for a linear
programming problem and let Z = ax + by be the objective function. When Z
has an optimal value (maximum or minimum), where the variables x and y
are subject to constraints described by linear inequalities, this optimal value
must occur at a corner point (vertex) of the feasible region.
Theorem 2 Let R be the feasible region for alinear programming problem,
and let Z = ax + by be the aobjective function. If R is bounded, then the
objective function Z has both amaximum and a minimum value on R and
each of these occurs at a corner point (vertex) of R.

¢ If thefeasibleregion isunbounded, then a maximum or aminimum may not
exist. However, if it exists, it must occur at a corner point of R.

4 Corner point method for solving alinear programming problem. The method
comprises of thefollowing steps:
(i) Findthefeasibleregion of thelinear programming problem and determine
its corner points (vertices).
(i) Evaluatethe objectivefunction Z = ax + by at each corner point. Let M
and m respectively be the largest and smallest values at these points.
(iii) If thefeasibleregionisbounded, M and mrespectively are the maximum
and minimum val ues of the objective function.
If the feasible region is unbounded, then
(i) M isthemaximum value of the objectivefunction, if the open half plane

determined by ax + by > M has no point in common with the feasible
region. Otherwise, the objective function has no maximum value.
(i) misthe minimum value of the objectivefunction, if the open half plane

determined by ax + by < m has no point in common with the feasible
region. Otherwise, the objective function has no minimum value.

¢ If two corner points of the feasible region are both optimal solutions of the
sametype, i.e., both produce the same maximum or minimum, then any point
on theline segment joining these two pointsis also an optimal solution of the
same type.
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Historical Note

In the World War |1, when the war operations had to be planned to economise
expenditure, maximise damage to the enemy, linear programming problems
came to the forefront.

Thefirst probleminlinear programming wasformulated in 1941 by the Russian
mathematician, L. Kantorovich and the American economist, F. L. Hitchcock,
both of whom worked at it independently of each other. This was the well
known transportation problem. In 1945, an English economist, G Stigler,
described yet another linear programming problem — that of determining an
optimal diet.

In 1947, the American economist, G. B. Dantzig suggested an efficient method
known as the simplex method which is an iterative procedure to solve any
linear programming problem in afinite number of steps.

L. Katorovich and American mathematical economist, T. C. Koopmans were
awarded the nobel prize in the year 1975 in economics for their pioneering
work in linear programming. With the advent of computers and the necessary
softwares, it has become possible to apply linear programming model to
increasingly complex problemsin many aress.

—_— e —



Chapter 13
(PROBABILITY )

+ The theory of probabilities is simply the Science of logic
quantitatively treated. — C.S. PEIRCE «¢

13.1 Introduction

In earlier Classes, we have studied the probability as a s tidiid il il
measure of uncertainty of events in a random experiment.
We discussed the axiomatic approach formulated by
Russian Mathematician, A.N. Kolmogorov (1903-1987)
and treated probability as a function of outcomes of the
experiment. We have also established equivalence between
the axiomatic theory and the classical theory of probability
in case of equally likely outcomes. On the basis of this
relationship, we obtained probabilities of events associated
with discrete sample spaces. We have also studied the
addition rule of probability. In this chapter, we shall discuss
the important concept of conditional probability of an event
given that another event has occurred, which will be helpful FaEaFmFm i mtemter
in understanding the Bayes' theorem, multiplication rule of Pierre de Fermat
probability and independence of events. We shall also learn (1601-1665)
an important concept of random variable and its probability
distribution and also the mean and variance of a probability distribution. In the last
section of the chapter, we shall study an important discrete probability distribution
called Binomial distribution. Throughout this chapter, we shall take up the experiments
having equally likely outcomes, unless stated otherwise.

13.2 Conditional Probability

Uptill now in probability, we have discussed the methods of finding the probability of
events. If we have two events from the same sample space, does the information
about the occurrence of one of the events affect the probability of the other event? Let
us try to answer this question by taking up a random experiment in which the outcomes
are equally likely to occur.

Consider the experiment of tossing three fair coins. The sample space of the
experiment is

S = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}
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1
Since the coins are fair, we can assign the probability 3 to each sample point. Let

E be the event ‘at least two heads appear’ and F be the event ‘first coin shows tail’.
Then
E = {HHH, HHT, HTH, THH}

and F= {THH, THT, TTH, TTT}
Therefore ~ P(E) = P ({HHH}) + P ({HHT}) + P ({HTH}) + P ({THH})
_1 1111 Why ?
g 5 g s Why?)
and P(F) =P ({THH}) + P ({THT}) + P ({TTH}) + P ({TTT})
L r 11t
8 8 8 8 2
Also En F= {THH}

with  P(E N F)=P({THH}) = %

Now, suppose we are given that the first coin shows tail, i.e. F occurs, then what is
the probability of occurrence of E? With the information of occurrence of F, we are
sure that the cases in which first coin does not result into a tail should not be considered
while finding the probability of E. This information reduces our sample space from the
set S to its subset F for the event E. In other words, the additional information really
amounts to telling us that the situation may be considered as being that of a new
random experiment for which the sample space consists of all those outcomes only
which are favourable to the occurrence of the event F.

Now, the sample point of F which is favourable to event E is THH.
Thus, Probability of E considering F as the sample space = g
. . 1
or Probability of E given that the event F has occurred = 1

This probability of the event E is called the conditional probability of E given
that F has already occurred, and is denoted by P (E|F).

1
Thus P(EIF) = 1

Note that the elements of F which favour the event E are the common elements of
E and F, i.e. the sample points of E N F.
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Thus, we can also write the conditional probability of E given that F has occurred as

Number of elementary events favourableto ENF

P(EF) = ;
(EIF) Number of elementary events which are favourable to F
_ n(EnF)
- n®
Dividing the numerator and the denominator by total number of elementary events
of the sample space, we see that P(E|F) can also be written as

n(ENF)
S P(ENF
P(E|F) = QEF; = (P(?)) . (D
n(sS)

Note that (1) is valid only when P(F) # 0 i.e., F # ¢ (Why?)
Thus, we can define the conditional probability as follows :

Definition 1 If E and F are two events associated with the same sample space of a
random experiment, the conditional probability of the event E given that F has occurred,
i.e. P (E|F) is given by

P(ENF)

P(E|F) = TF) provided P(F) # 0

13.2.1 Properties of conditional probability

Let E and F be events of a sample space S of an experiment, then we have
Property 1 P(S|F) = P(F|F) =1

We know that
_ P(SAF)_P(F) _
YOO "5 E rE
P(FAF) P(F
Also P(F|F) = %:%:1
Thus P(S|F) = P(F[F) = 1

Property 2 If A and B are any two events of a sample space S and F is an event
of S such that P(F) # 0, then

P((A U B)|F) =P(AJF) + P(BJF) — P((A n B)|F)
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In particular, if A and B are digoint events, then
P((AUB)|F) = P(AJF) + P(BJF)

We have

P[(AUB)NF]

P((AUB)IF) = P(F)

P[(ANnF) U (BNF)]
) P(F)
(by distributive law of union of sets over intersection)
P(AnF)+P(BNF)-P(AnB N F)
P(F)

_ P(AmF)+P(BmF) _P[(AnB) nF]
P(F) P(F) P(F)
=P(AJF) + P(BJF) — P((ANB)[F)
When A and B are disjoint events, then
P(ANB)F)=0
= P((A U B)|F) = P(A[F) + P(B|F)
Property 3P(E’[F) =1 — P(E[F)
From Property 1, we know that P (S|F) = 1

= P(EUEIF)=1 since S=EUE’
= P(E|F) + P (E'|F) =1 since E and E are disjoint events
Thus, P(E'F) = | — P(E|F)

Let us now take up some examples.

7 9 4
Example LIf P(A) = IER P(B) = el and P(A N B) = 'ER evaluate P (A|B).

4
Solution We have p(AB)=FA0B)_13_4
P(B) 9 9

13

Example 2 A family has two children. What is the probability that both the children are
boys given that at least one of them is a boy ?
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Solution Let b stand for boy and g for girl. The sample space of the experiment is
S={(b, b), (9, ), (b, 9), (9, 9}

Let E and F denote the following events :

E : ‘both the children are boys’

F : “at least one of the child is a boy’

Then E = {(b,b)} and F = {(b,b), (g,0), (b,9)}
Now E n F= {(b,b)}
Thus P(F)=%andP(E N F)=%
1
Therefore P(E|F) = %;\)F) = % = %
4

Example 3 Ten cards numbered 1 to 10 are placed in a box, mixed up thoroughly and
then one card is drawn randomly. If it is known that the number on the drawn card is
more than 3, what is the probability that it is an even number?

Solution Let A be the event ‘the number on the card drawn is even’ and B be the
event ‘the number on the card drawn is greater than 3’. We have to find P(A|B).

Now, the sample space of the experiment is S = {1, 2, 3,4,5,6,7,8,9, 10}

Then A=1{2,4,6,8,10}, B=1{4,5,6,7,8.,9, 10}
and ANB={46,38,10}
5 7 4
=—,P(B)=—and P(ANB)=—
Also P(A) 0 (B) 0 ( ) 10

Then P(A|B) = W:

4
P(ANB) E_i
77

10

Example4In a school, there are 1000 students, out of which 430 are girls. It is known
that out 0f 430, 10% of the girls study in class XII. What is the probability that a student
chosen randomly studies in Class XII given that the chosen student is a girl?

Solution Let E denote the event that a student chosen randomly studies in Class XII
and F be the event that the randomly chosen student is a girl. We have to find P (E|F).
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430
Now PF) = 20 043 and P(E  F)=—D 0,043 (Why?)
1000 1000
P(ENF) 0.043
Th P(E[F) = = =0.1
en EB =55 043

Example5 A die is thrown three times. Events A and B are defined as below:
A : 4 on the third throw
B : 6 on the first and 5 on the second throw
Find the probability of A given that B has already occurred.

Solution The sample space has 216 outcomes.
(LL4) (1,2.4) ...(1,6,4) (2,1.4) (2,2,4) ... (2,6.4)

Now A=43,14) (324 ..(3,64) (4,14 (424) ..4,064)
(5,1,4) (5,2,4) ... (5,6,4) (6,1,4) (6,2,4) ...(6,6,4)

B = {(6,5,1),(6,5,2),(6,5,3),(6,5,4), (6,5,5), (6,5,6)}

and A A B= {(654)}.
N P(B) =~ and P(AB)= ——
ow (B) = 71 and P(ANB) = 7

1

P(ANB) 216 1

PB) 6 6
216

Then P(AB) =

Example 6 A die is thrown twice and the sum of the numbers appearing is observed
to be 6. What is the conditional probability that the number 4 has appeared at least
once?

Solution Let E be the event that ‘number 4 appears at least once’ and F be the event
that ‘the sum of the numbers appearing is 6.

Then, E={4.,1),(4,2),(4,3),(4,4),(4,5),(4,6),(1,4),(2,4),(3,4),(5,4),(6,4)}
and F={(1,5),(2,4),(3,3),(4,2),(5,1)}

11 5
We have P(E) = gand P(F) = 36

AISO EnF = {(294)’ (4’2)}
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2
Therefore P(ENnF)= —
36
Hence, the required probability
2
P(ENF) 3¢ 2
P(EJF) = —(P )=%=—
& 2 5
36

For the conditional probability discussed above, we have considered the elemen-
tary events of the experiment to be equally likely and the corresponding definition of
the probability of an event was used. However, the same definition can also be used in
the general case where the elementary events of the sample space are not equally
likely, the probabilities P (ENF) and P (F) being calculated accordingly. Let us take up
the following example.

Example 7 Consider the experiment of tossing a coin. If the coin shows head, toss it

again but if it shows tail, then throw a die. Find the (H,H)
conditional probability of the event that ‘the die shows Head (H) <
a number greater than 4° given that ‘there is at least < (H,T)
one tail’.
(T.1)
Solution The outcomes of the experiment can be (T,2)
represented in following diagrammatic manner called Tail (T) q’i)
the ‘tree diagram’. ETZS;
The sample space of the experiment may be (T,6)

described as Fig13.1

S={(H,H), (HT), (T.1), (T.2), (T.3), (T.4), (T.5), (T.6)}

where (H, H) denotes that both the tosses result into v,
head and (T, i) denote the first toss result into a tail and

(H,H)
Head (H)<
the number i appeared on the die fori=1,2,3,4,5,6. & Yy~ (H,T)
(T,1)
1

Thus, the probabilities assigned to the 8 elementary Via
events

(H,H), (H,T),(T, 1), (T, 2), (T, 3) (T, 4), (T, 5), (T, 6)

it
are 454512>12512512>12912 respectheyW 1cn 18 I/IZ(T’S)

clear from the Fig 13.2. Fig13.2 (T,6)

Tail (T)
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Let F be the event that ‘there is at least one tail’ and E be the event ‘the die shows
a number greater than 4°. Then

F={(HT),(T.1),(T.2),(T.3), (T.4), (T.5), (T,6);
E={(T.9),(T,6)} and En F={(T,5), (T,6)}
Now P(F) =P({(H,D}) + P ((T.1D}) + P ({(T.2)}) + P ({(T.3)})
+ P({(TA4)}) + P(U(T.5)}) + P({(T.6)})
1 1.1 1 1 1 1 3

11
ad  PEAF)-P((THN+PUTHN - = = <
1
Hence  P(EJF) = P(%Q)F)zg_%
4

| EXERCISE 13.1
1. Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and
P(E n F) = 0.2, find P (E|F) and P (F|E)
2. Compute P(A|B), if P(B) = 0.5 and P (A " B)=0.32
3. If P(A)=0.8, P(B)=0.5 and P(BJA) = 0.4, find
(i) P(A nB) (i) P(AB) (iii) P(A U B)

5 2
4. Evaluate P(A U B), if 2P(A) = P(B) = e} and P(AB) = 5

6 5
5 IfPA)= 1 ,P(B)= 1 and P(A U B) %,ﬁnd

(i) P(AnB) (i) P(AB) (i) P(BJA)
Determine P(E|F) in Exercises 6 to 9.
6. A coin is tossed three times, where
(1) E :head onthird toss , F : heads on first two tosses
(i) E : atleast two heads , F : at most two heads

(i) E:atmosttwo tails , F: atleast one tail
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12.
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14.

15.
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Two coins are tossed once, where

E : tail appears on one coin, F : one coin shows head
E : no tail appears, F : no head appears

A die is thrown three times,

E : 4 appears on the third toss, F: 6 and 5 appears respectively
on first two tosses
Mother, father and son line up at random for a family picture
E : son on one end, F : father in middle
A black and a red dice are rolled.
(a) Find the conditional probability of obtaining a sum greater than 9, given
that the black die resulted in a 5.
(b) Find the conditional probability of obtaining the sum 8, given that the red die
resulted in a number less than 4.
A fair die is rolled. Consider events E = {1,3,5}, F={2,3} and G= {2,3,4,5}
Find
(i) P(E|F) and P(F|E) (i) P(E|G) and P(G|E)
(i) P((Ew F)|G) and P((E N F)|G)
Assume that each born child is equally likely to be a boy or a girl. If a family has
two children, what is the conditional probability that both are girls given that
(i) the youngest is a girl, (ii) at least one is a girl?
An instructor has a question bank consisting of 300 easy True / False questions,
200 difficult True / False questions, 500 easy multiple choice questions and 400
difficult multiple choice questions. If a question is selected at random from the
question bank, what is the probability that it will be an easy question given that it
is a multiple choice question?
Given that the two numbers appearing on throwing two dice are different. Find
the probability of the event ‘the sum of numbers on the dice is 4°.
Consider the experiment of throwing a die, if a multiple of 3 comes up, throw the

die again and if any other number comes, toss a coin. Find the conditional probability
of the event ‘the coin shows a tail’, given that ‘at least one die shows a 3°.

In each of the Exercises 16 and 17 choose the correct answer:

16.

1
If P(A)= 5, P(B)=0, then P(AJB) is

1
(A) 0 B) 5
(C) notdefined (D) 1
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17. If A and B are events such that P(A|B) = P(B|A), then
(A) AcBbutA#B (B) A=B
(©) AnB=9¢ (D) P(A) =P(B)

13.3 Multiplication Theorem on Probability

Let E and F be two events associated with a sample space S. Clearly, the set E N F
denotes the event that both E and F have occurred. In other words, E N F denotes the
simultaneous occurrence of the events E and F. The event E N F is also written as EF.

Very often we need to find the probability of the event EF. For example, in the
experiment of drawing two cards one after the other, we may be interested in finding
the probability of the event ‘a king and a queen’. The probability of event EF is obtained
by using the conditional probability as obtained below :

We know that the conditional probability of event E given that F has occurred is
denoted by P(E|F) and is given by

P(E NF)
P(E[F) = ———,P(F)#0
BIF) = 5P ®

From this result, we can write

P(E nF)=P(F) . P(E|F) .. (D)
Also, we know that

P(F[E) = PECE) p(g)20

P(E)
P(E NnF) .
or P(F|E)=W(smceEﬁ F=Fn E)
Thus, P(En F)=P(E). P(FIE) e (2)

Combining (1) and (2), we find that
P(E n F) =P(E) P(F|E)
= P(F) P(E|F) provided P(E) # 0 and P(F) # 0.
The above result is known as the multiplication rule of probability.
Let us now take up an example.
Example 8 An urn contains 10 black and 5 white balls. Two balls are drawn from the

urn one after the other without replacement. What is the probability that both drawn
balls are black?

Solution Let E and F denote respectively the events that first and second ball drawn
are black. We have to find P(E n F) or P (EF).
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10
Now P(E) = P (black ball in first draw) = 15

Also given that the first ball drawn is black, i.e., event E has occurred, now there
are 9 black balls and five white balls left in the urn. Therefore, the probability that the
second ball drawn is black, given that the ball in the first draw is black, is nothing but
the conditional probability of F given that E has occurred.

9
ie. P(FIE) = 77

By multiplication rule of probability, we have
P(EnF)=P(E) P(FIE)

10 9 3
T15 14 7
Multiplication rule of probability for more than two events If E, F and G are
three events of sample space, we have
P(ENnFn G)=P(E)P(F|E) P(G|(E n F))=P(E) P(FIE) P(GIEF)
Similarly, the multiplication rule of probability can be extended for four or
more events.
The following example illustrates the extension of multiplication rule of probability
for three events.

Example 9 Three cards are drawn successively, without replacement from a pack of
52 well shuffled cards. What is the probability that first two cards are kings and the
third card drawn is an ace?

Solution Let K denote the event that the card drawn is king and A be the event that
the card drawn is an ace. Clearly, we have to find P (KKA)

4
Now P(K) =

Also, P (K|K) is the probability of second king with the condition that one king has
already been drawn. Now there are three kings in (52 — 1) = 51 cards.

3
Therefore P(KIK) = 51

Lastly, P(AJKK) is the probability of third drawn card to be an ace, with the condition
that two kings have already been drawn. Now there are four aces in left 50 cards.
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4
Therefore P(AKK) = 50

By multiplication law of probability, we have
P(KKA) =P(K) P(KK) P(AIKK)
4 3 4 2
T 52 51 50 5525

13.4 Independent Events

Consider the experiment of drawing a card from a deck of 52 playing cards, in which
the elementary events are assumed to be equally likely. If E and F denote the events
'the card drawn is a spade' and 'the card drawn is an ace' respectively, then

13 1 4 1
=— —andP(F) — —
PE) 52 4 ® 52 13

Also E and F is the event ' the card drawn is the ace of spades' so that

1
P(EmF)—5—2
1
PE F) 5 1
H P(EF) = ——— 2= -
ence (E|F) P(F) 1 3
13

Since P(E) = e P (E|F), we can say that the occurrence of event F has not

affected the probability of occurrence of the event E.
We also have

P(E F) LI
P(E)

P(F|E) = 3

1
Again, P(F) = B P (F|E) shows that occurrence of event E has not affected

the probability of occurrence of the event F.

Thus, E and F are two events such that the probability of occurrence of one of
them is not affected by occurrence of the other.

Such events are called independent events.
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Definition 2 Two events E and F are said to be independent, if

and

P(F|E) =P (F) provided P (E) #0
P (E|F) =P (E) provided P (F) #0

Thus, in this definition we need to have P (E) # 0 and P(F)# 0

Now, by the multiplication rule of probability, we have

P(E N F)=P(E) . P (FIE) (D)

If E and F are independent, then (1) becomes

P(ENF)=P(E) . P(F) ()

Thus, using (2), the independence of two events is also defined as follows:

Definition 3 Let E and F be two events associated with the same random experiment,
then E and F are said to be independent if

P(E N F)=P(E).P (F)

Remarks

V)

(if)

(i)

(iv)

Two events E and F are said to be dependent if they are not independent, i.e. if
P(ENF)#P(E).P (F)
Sometimes there is a confusion between independent events and mutually
exclusive events. Term ‘independent’ is defined in terms of ‘probability of events’
whereas mutually exclusive is defined in term of events (subset of sample space).
Moreover, mutually exclusive events never have an outcome common, but
independent events, may have common outcome. Clearly, ‘independent’ and
‘mutually exclusive’ do not have the same meaning.
In other words, two independent events having nonzero probabilities of occurrence
can not be mutually exclusive, and conversely, i.e. two mutually exclusive events
having nonzero probabilities of occurrence can not be independent.
Two experiments are said to be independent if for every pair of events E and F,
where E is associated with the first experiment and F with the second experiment,
the probability of the simultaneous occurrence of the events E and F when the
two experiments are performed is the product of P(E) and P(F) calculated
separately on the basis of two experiments, i.e., P (E " F) =P (E) . P(F)
Three events A, B and C are said to be mutually independent, if
P(AnB)=P(A) P(B)

P(An C)=P(A) P(O)

P(B N C)=P(B) P(C)
and P(AnBn C)=P(A) P(B) P(C)



544 MATHEMATICS
If at least one of the above is not true for three given events, we say that the
events are not independent.

Example 10 A die is thrown. If E is the event ‘the number appearing is a multiple of
3’ and F be the event ‘the number appearing is even’ then find whether E and F are
independent ?

Solution We know that the sample space is S = {1, 2, 3,4, 5, 6}

Now E={3,6},F={2,4,6} and ENnF= {6}
2 1 1

Then P(E)= —=, P(F)——=— and P(En F)_—
6 3 2

Clearly P(E n F)=P(E). P (F)

Hence E and F are independent events.

Example 11 An unbiased die is thrown twice. Let the event A be ‘odd number on the
first throw” and B the event ‘odd number on the second throw’. Check the independence
of the events A and B.

Solution If all the 36 elementary events of the experiment are considered to be equally
likely, we have
1

18 1
P(A)=—6=— and P(B) % )

Also P(A mn B) = P (odd number on both throws)
> _1
36 4
N P(A) P(B) = ! Xl—l
ow (A) P(B) = 5 5=7
Clearly P(AnB)=P(A) x P(B)
Thus, A and B are independent events

Example 12 Three coins are tossed simultaneously. Consider the event E ‘three heads
or three tails’, F ‘at least two heads’ and G ‘at most two heads’. Of the pairs (E,F),
(E,G) and (F,G), which are independent? which are dependent?
Solution The sample space of the experiment is given by

S = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}
Clearly E = {HHH, TTT}, F= {HHH, HHT, HTH, THH}
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and G = {HHT, HTH, THH, HTT, THT, TTH, TTT}
Also EnF={HHH}, EnG={TTT},Fn G={HHT, HTH, THH}
2 1 4 1 7
:—:—’PF :—:—’PG = —
Therefore P(E) s 2 () PR Q) 3
1 1 3
and P(ENF) = 3’ P(ENG) =3 P(FNG) =3
1 1 1 1 7 7
=— — —PE) PG - — —
Also PE).PF) =7 5 3 (E) P(G) 13 3
d P(F).P(G L7 7
Thus P(En F)=P(E) . P(F)
P(En G)#P(E) . P(G)
and P(Fn G)#P (F) . P(G)

Hence, the events (E and F) are independent, and the events (E and G) and
(F and G) are dependent.

Example 13 Prove that if E and F are independent events, then so are the events
E and F’.

Solution Since E and F are independent, we have
P(E " F)=P(E) . P(F) (1)
From the venn diagram in Fig 13.3, it is clear

that ENF and E N F” are mutually exclusive events | (E'NF") S
and also E=(EN F) U (ENF’). N ¢ F

Therefore P(E) =P(ENF)+P(En F’)
or P(E N F’)=P(E)-P(EN F)
—pE)-PE).PF) | FOF) “E®AF)  (E'NF
(by (1)) Fig13.3
=P(E) (1-P(F))
=P(E). P(F)

Hence, E and F’ are independent
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In a similar manner, it can be shown that if the events E and F are
independent, then

(a) E’andF are independent,

(b) E’and F’ are independent

Example 14 If A and B are two independent events, then the probability of occurrence

of at least one of A and B is given by 1- P(A”) P(B")

Solution We have

P (at least one of A and B) = P(A U B)

=P(A) + P(B) - P(A n B)
=P(A) + P(B) — P(A) P(B)
=P(A) + P(B) [1-P(A)]
=P(A) + P(B). P(A")
=1- P(A") + P(B) P(A")
=1-P(A") [1-P(B)]
=1-P(A") P (B)

|EXERCISE 13.2]

3 1
1. If P(A) 5 and P (B) 3 find P (A n B) if A and B are independent events.

2. Two cards are drawn at random and without replacement from a pack of 52
playing cards. Find the probability that both the cards are black.

3. A box of oranges is inspected by examining three randomly selected oranges
drawn without replacement. If all the three oranges are good, the box is approved
for sale, otherwise, it is rejected. Find the probability that a box containing 15
oranges out of which 12 are good and 3 are bad ones will be approved for sale.

4. A fair coin and an unbiased die are tossed. Let A be the event ‘head appears on
the coin’ and B be the event ‘3 on the die’. Check whether A and B are
independent events or not.

5. A die marked 1, 2, 3 in red and 4, 5, 6 in green is tossed. Let A be the event,
‘the number is even,” and B be the event, ‘the number is red’. Are A and B
independent?

3 3
6. Let E and F be events with P(E) —, P(F) =— and P (E N F) =

1
5 10 5.Are

E and F independent?
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1 3
Given that the events A and B are such that P(A) = Ex P(AuUB)= 5 and
P(B) =p. Find p if they are (i) mutually exclusive (ii) independent.
Let A and B be independent events with P(A) = 0.3 and P(B) = 0.4. Find
(i) P(A nB) (i) P(A UB)
(i) P(A|B) (iv) P(BJA)

1 1 1
If A and B are two events such that P(A) = 1 P(B)= 5 and P(ANB) =3
find P (not A and not B).

N

1 7
Events A and B are such that P (A) = b P(B)= I and P(not A or not B) =

State whether A and B are independent ?
Given two independent events A and B such that P(A) = 0.3, P(B) =0.6.
Find
(1) P(A and B) (i) P(A and not B)
(i) P(A or B) (iv) P(neither A nor B)
A die is tossed thrice. Find the probability of getting an odd number at least once.

Two balls are drawn at random with replacement from a box containing 10 black
and 8 red balls. Find the probability that

(1) both balls are red.
(ii) first ball is black and second is red.
(iii) one of them is black and other is red.

1 1
Probability of solving specific problem independently by A and B are ) and 3

respectively. If both try to solve the problem independently, find the probability
that

(1) the problem is solved (ii) exactly one of them solves the problem.

One card is drawn at random from a well shuffled deck of 52 cards. In which of
the following cases are the events E and F independent ?
(i) E : ‘the card drawn is a spade’
F : ‘the card drawn is an ace’
(i) E : ‘the card drawn is black’
F : ‘the card drawn is a king’
(i) E : ‘the card drawn is a king or queen

9

F : ‘the card drawn is a queen or jack’.
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16. Inahostel, 60% of the students read Hindi news paper, 40% read English news
paper and 20% read both Hindi and English news papers. A student is selected
at random.

(a) Find the probability that she reads neither Hindi nor English news papers.
(b) If she reads Hindi news paper, find the probability that she reads English
news paper.
(c) If she reads English news paper, find the probability that she reads Hindi
news paper.
Choose the correct answer in Exercises 17 and 18.
17. The probability of obtaining an even prime number on each die, when a pair of
dice is rolled is
1 1 1
(A) 0 B) 3 © 5 D) 36
18. Two events A and B will be independent, if
(A) A and B are mutually exclusive
(B) P(A'B’) =[1 - P(A)] [1 - P(B)]
(C) P(A) = P(B)
(D) P(A) + P(B) = 1

13.5 Bayes Theorem

Consider that there are two bags I and II. Bag I contains 2 white and 3 red balls and
Bag II contains 4 white and 5 red balls. One ball is drawn at random from one of the

1
bags. We can find the probability of selecting any of the bags (i.e. 5 ) or probability of

drawing a ball of a particular colour (say white) from a particular bag (say Bag I). In
other words, we can find the probability that the ball drawn is of a particular colour, if
we are given the bag from which the ball is drawn. But, can we find the probability that
the ball drawn is from a particular bag (say Bag II), if the colour of the ball drawn is
given? Here, we have to find the reverse probability of Bag II to be selected when an
event occurred after it is known. Famous mathematician, John Bayes' solved the problem
of finding reverse probability by using conditional probability. The formula developed
by him is known as ‘Bayes theorem’ which was published posthumously in 1763.
Before stating and proving the Bayes' theorem, let us first take up a definition and
some preliminary results.

13.5.1 Partition of a sample space
A setofeventsE, E, ..., E_is said to represent a partition of the sample space S if
(a) E NE=0¢, i#j,0,j=1,2,3,..,n
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(b) E,UE,U.. UE=Sand
(c) P(E)>0foralli=1,2,..,n.
In other words, the events E , E,, ..., E_ represent a partition of the sample space
S if they are pairwise disjoint, exhaustive and have nonzero probabilities.

As an example, we see that any nonempty event E and its complement E” form a
partition of the sample space S since they satisfy ENE'=¢ and EUE =S.

From the Venn diagram in Fig 13.3, one can easily observe that if E and F are any
two events associated with a sample space S, thenthe set {ENF,ENF,E NnFE,E NF’}
is a partition of the sample space S. It may be mentioned that the partition of a sample
space is not unique. There can be several partitions of the same sample space.

We shall now prove a theorem known as Theorem of total probability.

13.5.2 Theorem of total probability
Let {E,E,,..E } beapartition of the sample space S, and suppose that each of the
events E, E.,..., E_has nonzero probability of occurrence. Let A be any event associated

with S, then
P(A) =P(E) P(A[E)) + P(E) P(A[E, + ... + P(E)) P(AE)

= > P(E,)P(AE))
j=1

Proof GiventhatE,E,....,E is a partition of the sample space S (Fig 13.4). Therefore,
S=E UE,U..UE

and EimEj=(]),i¢j,i,j=1,2,...,n
Now, we know that for any event A,
A=AnNS
=ANn((E VE U...UE)
=(ANE)UMANE)uU.U(ANE) Fig13.4

AlsoANE and AN E, are respectively the subsets of E, and E. We know that
E, and Ei are disjoint, for I # ] , therefore, A NE and A N EJ. are also disjoint for all
i#j, Lj=12,..,n.
Thus, P(AA)=P[(ANE)UANE)U...0ANE)]
=P(AANE)+P(ANE)+..+P(ANE)
Now, by multiplication rule of probability, we have
P(ANE)=PE)PAIE)as P(E)=0Vi=12,.,n
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Therefore, P(A)=P (E) P (A[E) + P (E)) P (A[E) + ... + P (E)P(AE,)

or P(A) = ZP(EJ-)P(A|E])
0

Example 15 A person has undertaken a construction job. The probabilities are 0.65
that there will be strike, 0.80 that the construction job will be completed on time if there
is no strike, and 0.32 that the construction job will be completed on time if there is a
strike. Determine the probability that the construction job will be completed on time.

Solution Let A be the event that the construction job will be completed on time, and B
be the event that there will be a strike. We have to find P(A).
We have

P(B) = 0.65, P(no strike) = P(B") = 1 — P(B) = 1 — 0.65 = 0.35
P(AB) = 0.32, P(A|B’) = 0.80

Since events B and B” form a partition of the sample space S, therefore, by theorem
on total probability, we have

P(A) = P(B) P(A|B) + P(B") P(A|B’)
=0.65x0.32+0.35x0.8
=0.208 +0.28 =0.488
Thus, the probability that the construction job will be completed in time is 0.488.
We shall now state and prove the Bayes' theorem.

Bayes Theorem IfE , E, ,..., E_are n non empty events which constitute a partition
of sample space S,i.e. E,E, ,..., E_are pairwise disjointand E WE U ... UE =S and
A is any event of nonzero probability, then
_ _PE)PA[E) -
P(E|A) = foranyi=1,2,3,..,n
D P(E)P(AE))
i=1

Proof By formula of conditional probability, we know that
P(ANE,)
P(A)
_ PE)DPAE)
P(A)

P(E|A) =

(by multiplication rule of probability)

__P(E)PAE) N
= (by the result of theorem of total probability)

D P(E,)PAE))
j=1
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Remark The following terminology is generally used when Bayes' theorem is applied.
The events E, E,, ..., E_are called hypotheses.
The probability P(E) is called the priori probability of the hypothesis E,

The conditional probability P(E, |A) is called a posteriori probability of the
hypothesis E..

Bayes' theorem is also called the formula for the probability of "causes". Since the
E's are a partition of the sample space S, one and only one of the events E, occurs (i.e.
one of the events E, must occur and only one can occur). Hence, the above formula
gives us the probability of a particular E, (i.e. a "Cause"), given that the event A has
occurred.

The Bayes' theorem has its applications in variety of situations, few of which are
illustrated in following examples.

Example 16 Bag I contains 3 red and 4 black balls while another Bag II contains 5 red
and 6 black balls. One ball is drawn at random from one of the bags and it is found to
be red. Find the probability that it was drawn from Bag II.

Solution Let E, be the event of choosing the bag I, E, the event of choosing the bag I1
and A be the event of drawing a red ball.

1
Then P(E) = P(E,) = 3
: 3
Also P(A|E,) = P(drawing a red ball from Bag I) = F
. 5
and P(A|E,) = P(drawing a red ball from Bag IT) = 11

Now, the probability of drawing a ball from Bag II, being given that it is red,
is P(E,|A)
By using Bayes' theorem, we have

1.5
7X7
P(E.JA) = P(E,)P(AE,) 211 3
? P(E,)P(A[E))+P(E,)P(AE,) 1 3 1 5 68
277 2711

Example 17 Given three identical boxes I, IT and III, each containing two coins. In
box I, both coins are gold coins, in box II, both are silver coins and in the box III, there
is one gold and one silver coin. A person chooses a box at random and takes out a coin.
Ifthe coin is of gold, what is the probability that the other coin in the box is also of gold?
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Solution LetE , E, and E, be the events that boxes I, Il and III are chosen, respectively.

Then P(E,) = P(E,) = P(E,) = ;

Also, let A be the event that ‘the coin drawn is of gold’

2
Then P(AJE,) = P(a gold coin from bag I) = 5" 1
P(AIE,) = P(a gold coin from bag II) = 0

1
P(AIE,) = P(a gold coin from bag III) = 5
Now, the probability that the other coin in the box is of gold
= the probability that gold coin is drawn from the box I.
=P(E,|A)

By Bayes' theorem, we know that

o P(E,)P(AIE))
P(E |A) = P(E,)P(AJE,)+P(E,)P(A[E,)+P(E;)P(AIE;)
1
gxl _2

1x1+1x0+1><1 3
3 32

Example 18 Suppose that the reliability of a HIV test is specified as follows:

Of people having HIV, 90% of the test detect the disease but 10% go undetected. Of
people free of HIV, 99% of the test are judged HIV—-ive but 1% are diagnosed as
showing HIV+ive. From a large population of which only 0.1% have HIV, one person
is selected at random, given the HIV test, and the pathologist reports him/her as
HIV+ive. What is the probability that the person actually has HIV?

Solution Let E denote the event that the person selected is actually having HIV and A
the event that the person's HIV test is diagnosed as +ive. We need to find P(E|A).
Also E’ denotes the event that the person selected is actually not having HIV.

Clearly, {E, E’} is a partition of the sample space of all people in the population.
We are given that

0.1
~0.1% — 0.001
P(E)=0.1% oo
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P(E’) =1-P(E)=0.999
P(AJE) = P(Person tested as HIV+ive given that he/she
is actually having HIV)

90
-90% — 0.9
90% oo

and P(A|E’) = P(Person tested as HIV +ive given that he/she
is actually not having HIV)

1
=10, = — —
1% 100 0.01

Now, by Bayes' theorem
P(E)P(A|E)
P(E)P(A|E)+P(E )P(A|E )

P(E|A) =

0.001x0.9 90
0.001x0.94+0.999%x0.01 1089
0.083 approx.

Thus, the probability that a person selected at random is actually having HIV
given that he/she is tested HIV+ive is 0.083.

Example 19 In a factory which manufactures bolts, machines A, B and C manufacture
respectively 25%, 35% and 40% of the bolts. Of their outputs, 5, 4 and 2 percent are
respectively defective bolts. A bolt is drawn at random from the product and is found
to be defective. What is the probability that it is manufactured by the machine B?

Solution Let events B,, B,, B, be the following :
B, : the bolt is manufactured by machine A
B, : the bolt is manufactured by machine B
B, : the bolt is manufactured by machine C

Clearly, B, B,, B, are mutually exclusive and exhaustive events and hence, they
represent a partition of the sample space.

Let the event E be ‘the bolt is defective’.
The event E occurs with B, or with B, or with B,. Given that,
P(B,) =25% =0.25, P (B,)) =0.35 and P(B,) = 0.40
Again P(E|B)) = Probability that the bolt drawn is defective given that it is manu-
factured by machine A = 5% = 0.05
Similarly, P(E|B,) = 0.04, P(E[B,) = 0.02.
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Hence, by Bayes' Theorem, we have
P(B,)P(E|B,)
P(B,)P(E[B))+P(B,)P(E|B,)+P(B )P (E[B;)
0.35x0.04
0.25x0.05+0.35%0.04 +0.40 x 0.02

~0.0140 _ 28
T 0.0345 69

Example 20 A doctor is to visit a patient. From the past experience, it is known that
the probabilities that he will come by train, bus, scooter or by other means of transport
1

311 1
are respectively — 10’5 10andg The probabilities that he will be late are — 13 andE

if he comes by train, bus and scooter respectively, but if he comes by other means of
transport, then he will not be late. When he arrives, he is late. What is the probability
that he comes by train?

P(B,[E) =

Solution Let E be the event that the doctor visits the patient late and let T, T, T,, T,
be the events that the doctor comes by train, bus, scooter, and other means of transport
respectively.

S 1 2
Then P(T) = P (T,)=—=,P(Ty) = Balld P(T,)= 3 (given)
1
P(E|T,) = Probability that the doctor arriving late comes by train = 1

1 1
Similarly, P(E|T)) = P(E|T )= 7% and P(E|T,) = 0, since he is not late if he
comes by other means of transport.
Therefore, by Bayes' Theorem, we have
P(T |E) = Probability that the doctor arriving late comes by train
P(T)P(ET)
P(T)) P(E[T))+P(T,) P(E[T,)+P(T;) P(E[T; )+ P(T, )P (E[T,)

31201

T2, 40 18 2
12 5

3
10

A=
DN | —
[OSTITY [S
o‘w
—_
Sl=la—

. |
Hence, the required probability is 3
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Example 21 A man is known to speak truth 3 out of 4 times. He throws a die and
reports that it is a six. Find the probability that it is actually a six.

Solution Let E be the event that the man reports that six occurs in the throwing of the

die and let S, be the event that six occurs and S, be the event that six does not occur.
, 1

Then P(S,) = Probability that six occurs = G

5
P(S,) = Probability that Six does not occur = c

P(E[S,) = Probability that the man reports that SiX occurs when Six has
actually occurred on the die
3
= Probability that the man speaks the truth = 1

P(E|S,) = Probability that the man reports that SiX occurs when SiX has
not actually occurred on the die

AW
B

= Probability that the man does not speak the truth 1

Thus, by Bayes' theorem, we get
P(S,|E) = Probability that the report of the man that SiX has occurred is
actually a siX
h P(S)P(E]S))
P(S,)P(E[S;)+P(S,)P(E[S,)

124
g 8

_.

Al W|oy | —

NN | W
o0 | W

1
4

3
Hence, the required probability is g

EXERCISE 13.3

1. Anurn contains 5 red and 5 black balls. A ball is drawn at random, its colour is
noted and is returned to the urn. Moreover, 2 additional balls of the colour drawn
are put in the urn and then a ball is drawn at random. What is the probability that

the second ball is red?
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A bag contains 4 red and 4 black balls, another bag contains 2 red and 6 black
balls. One of the two bags is selected at random and a ball is drawn from the bag
which is found to be red. Find the probability that the ball is drawn from the
first bag.

Of the students in a college, it is known that 60% reside in hostel and 40% are
day scholars (not residing in hostel). Previous year results report that 30% of all
students who reside in hostel attain A grade and 20% of day scholars attain A
grade in their annual examination. At the end of the year, one student is chosen
atrandom from the college and he has an A grade, what is the probability that the
student is a hostlier?

In answering a question on a multiple choice test, a student either knows the

3 1
answer or guesses. Let 1 be the probability that he knows the answer and 4

be the probability that he guesses. Assuming that a student who guesses at the

1
answer will be correct with probability e What is the probability that the stu-
dent knows the answer given that he answered it correctly?

A laboratory blood test is 99% effective in detecting a certain disease when it is
in fact, present. However, the test also yields a false positive result for 0.5% of
the healthy person tested (i.e. if a healthy person is tested, then, with probability
0.005, the test will imply he has the disease). If 0.1 percent of the population
actually has the disease, what is the probability that a person has the disease
given that his test result is positive ?

There are three coins. One is a two headed coin (having head on both faces),
another is a biased coin that comes up heads 75% of the time and third is an
unbiased coin. One of the three coins is chosen at random and tossed, it shows
heads, what is the probability that it was the two headed coin ?

An insurance company insured 2000 scooter drivers, 4000 car drivers and 6000
truck drivers. The probability of an accidents are 0.01, 0.03 and 0.15 respectively.
One of the insured persons meets with an accident. What is the probability that
he is a scooter driver?

A factory has two machines A and B. Past record shows that machine A produced
60% of the items of output and machine B produced 40% of the items. Further,
2% of the items produced by machine A and 1% produced by machine B were
defective. All the items are put into one stockpile and then one item is chosen at
random from this and is found to be defective. What is the probability that it was
produced by machine B?

Two groups are competing for the position on the Board of directors of a
corporation. The probabilities that the first and the second groups will win are
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14.
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0.6 and 0.4 respectively. Further, if the first group wins, the probability of
introducing a new product is 0.7 and the corresponding probability is 0.3 if the
second group wins. Find the probability that the new product introduced was by
the second group.

Suppose a girl throws a die. If she gets a 5 or 6, she tosses a coin three times and
notes the number of heads. If she gets 1, 2, 3 or 4, she tosses a coin once and
notes whether a head or tail is obtained. If she obtained exactly one head, what
is the probability that she threw 1, 2, 3 or 4 with the die?

A manufacturer has three machine operators A, B and C. The first operator A
produces 1% defective items, where as the other two operators B and C pro-
duce 5% and 7% defective items respectively. A is on the job for 50% of the
time, B is on the job for 30% of the time and C is on the job for 20% of the time.
A defective item is produced, what is the probability that it was produced by A?
A card from a pack of 52 cards is lost. From the remaining cards of the pack,
two cards are drawn and are found to be both diamonds. Find the probability of
the lost card being a diamond.

4
Probability that A speaks truth is 5 A coin is tossed. A reports that a head

appears. The probability that actually there was head is

A g B 1 C 1 D 2
(A) < (B) 5 ©) 3 (D) 3
If A and B are two events such that A — B and P(B) # 0, then which of the
following is correct?
P(B)
A) P(A|B) —— B) P(A|B) < P(A
()(I)P(A) (B) P(A[B) < P(A)
(C) P(AB) = P(A) (D) None of these

13.6 Random Variablesand itsProbability Distributions

We have already learnt about random experiments and formation of sample spaces. In
most of these experiments, we were not only interested in the particular outcome that
occurs but rather in some number associated with that outcomes as shown in following
examples/experiments.

(i) Intossing two dice, we may be interested in the sum of the numbers on the

two dice.

(i) In tossing a coin 50 times, we may want the number of heads obtained.
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(iii) In the experiment of taking out four articles (one after the other) at random
from a lot of 20 articles in which 6 are defective, we want to know the
number of defectives in the sample of four and not in the particular sequence
of defective and nondefective articles.

In all of the above experiments, we have a rule which assigns to each outcome of
the experiment a single real number. This single real number may vary with different
outcomes of the experiment. Hence, it is a variable. Also its value depends upon the
outcome of a random experiment and, hence, is called random variable. A random
variable is usually denoted by X.

If you recall the definition of a function, you will realise that the random variable X
is really speaking a function whose domain is the set of outcomes (or sample space) of
a random experiment. A random variable can take any real value, therefore, its
co-domain is the set of real numbers. Hence, a random variable can be defined as
follows :

Definition 4 A random variable is a real valued function whose domain is the sample
space of a random experiment.

For example, let us consider the experiment of tossing a coin two times in succession.
The sample space of the experiment is S = {HH, HT, TH, TT}.
If X denotes the number of heads obtained, then X is a random variable and for
each outcome, its value is as given below :
X(HH)=2,XHT)=1,X(TH)=1, X (TT)=0.
More than one random variables can be defined on the same sample space. For

example, let Y denote the number of heads minus the number of tails for each outcome
of the above sample space S.

Then Y(HH) =2, Y (HT)=0,Y (TH)=0,Y (TT) =-2.
Thus, X and Y are two different random variables defined on the same sample
space S.

Example 22 A person plays a game of tossing a coin thrice. For each head, he is
given Rs 2 by the organiser of the game and for each tail, he has to give Rs 1.50 to the
organiser. Let X denote the amount gained or lost by the person. Show that X is a
random variable and exhibit it as a function on the sample space of the experiment.

Solution X is a number whose values are defined on the outcomes of a random
experiment. Therefore, X is a random variable.
Now, sample space of the experiment is

S = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}
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Then X(HHH)=Rs (2 x3)=Rs 6
X(HHT) = X(HTH) = X(THH)=Rs (2 x 2 =1 x 1.50) = Rs 2.50
X (HTT) = X(THT) = (TTH) =Rs (1 x 2) — (2 x 1.50) =—Re 1
and X(TTT)=—-Rs (3 x 1.50) = — Rs 4.50
where, minus sign shows the loss to the player. Thus, for each element of the sample

space, X takes a unique value, hence, X is a function on the sample space whose range
is

{1, 2.50, —4.50, 6}
Example23 A bag contains 2 white and 1 red balls. One ball is drawn at random and
then put back in the box after noting its colour. The process is repeated again. If X
denotes the number of red balls recorded in the two draws, describe X.
Solution Let the balls in the bag be denoted by w,, w,, r. Then the sample space is
S={w, W, W, W, W, W,, W, W,, W, I, W, I, T W, TIW,TT}
Now, for we S
X (®) = number of red balls
Therefore
X (W, W) = X({W, w,}) = X({w, w,}) = X (fw, w,}) = 0
X (fw, 1) =X ({w, 13) = X({r w}) = X({r w,}) = T and X({r 1}) = 2
Thus, X is a random variable which can take values 0, 1 or 2.
13.6.1 Probability distribution of a random variable
Letus look at the experiment of selecting one family out of ten families f , f f,in

such a manner that each family is equally likely to be selected. Let the families f , f,
f have3,4,3,2,5,4,3,6,4, 5 members, respectively.

N
Let us select a family and note down the number of members in the family denoting
X. Clearly, X is a random variable defined as below :

X(f) =3, X(f) =4, X(f) =3, X(f) =2, X(f) =5,
X(f) =4, X(f) =3, X(f) =6, X(f)=4,X(f)=5
Thus, X can take any value 2,3,4,5 or 6 depending upon which family is selected.

PR

Now, X will take the value 2 when the family f, is selected. X can take the value

3 when any one of the families f, f,, f_is selected.
Similarly, X =4, when family f, f_or f, is selected,
X=5, when family f, or f  is selected

and X =6, when family f, is selected.
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Since we had assumed that each family is equally likely to be selected, the probability

that family f, is selected is %

1 1
Thus, the probability that X can take the value 2 is 10 We write P(X =2) T

Also, the probability that any one of the families f , f, or f_ is selected is

3
P({f, f,f}) = 10

3
Thus, the probability that X can take the value 3 = 10

. 3
We write P(X=3)= 0
Similarly, we obtain
3
P(X =4)=P({f, 1) =15

2
P(X=5)=P(f, f } T

and P(X = 6) = P({f,}) =%

Such a description giving the values of the random variable along with the
corresponding probabilities is called the probability distribution of the random
variable X.

In general, the probability distribution of a random variable X is defined as follows:

Definition 5 The probability distribution of a random variable X is the system of numbers

X 3 X, X, X,
P(X) : p, p, P,
n
where, p 0, B =1,i=12,.,n

il
The real numbers X, X,,..., X are the possible values of the random variable X and
p, (i = 1,2,..., n) is the probability of the random variable X taking the value X i.e.,
P(X = X) =P,
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If X is one of the possible values of a random variable X, the statement

X =X is true only at some point (s) of the sample space. Hence, the probability that
X takes value X is always nonzero, i.e. P(X = x) # 0.

Also for all possible values of the random variable X, all elements of the sample
space are covered. Hence, the sum of all the probabilities in a probability distribution
must be one.

Example 24 Two cards are drawn successively with replacement from a well-shuffled
deck of 52 cards. Find the probability distribution of the number of aces.

Solution The number of aces is a random variable. Let it be denoted by X. Clearly, X
can take the values 0, 1, or 2.

Now, since the draws are done with replacement, therefore, the two draws form
independent experiments.

Therefore, P(X = 0) = P(non-ace and non-ace)

= P(non-ace) x P(non-ace)

48 48 144

52 52 169
P(X =1) = P(ace and non-ace or non-ace and ace)
= P(ace and non-ace) + P(non-ace and ace)

= P(ace). P(non-ace) + P (non-ace) . P(ace)

4 48 48 4 _24

52 52 52 52169

and P(X=2)=P (ace and ace)
_4 4
© 52 52 169
Thus, the required probability distribution is
X 0 1 2
oy | 144 24 | 1
X) 169 169 | 169

Example 25 Find the probability distribution of number of doublets in three throws of
a pair of dice.
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Solution Let X denote the number of doublets. Possible doublets are
(1,1),(2,2), (3,3), (4,4), (5,5),(6,6)
Clearly, X can take the value 0, 1, 2, or 3.

Probability of getting a doublet 3£ é
. ) 1 5
Probability of not getting a doublet 1 g g
N P(X=0)=P d blt—é 505 12
o (X =0)=P(nodoublet) =" 0 & g

P(X =1) = P (one doublet and two non-doublets)
1 55 5 15 5 5 1

6 6 6 6 6 6 6 6 6

L8
6 6 216
P(X =2) =P (two doublets and one non-doublet)

I
w

and P(X = 3) = P (three doublets)
pl1 1 149
6 6 6 216

Thus, the required probability distribution is

X 0 1 2 3

125 75 15 1
216 | 216 | 216 | 216

P(X)

Verification Sum of the probabilities

o 125 75 15 1
=" " 216 216 216 216

125 75 15 1 216
a 216 216

15
216
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Example 26 Let X denote the number of hours you study during a randomly selected
school day. The probability that X can take the values X, has the following form, where
k is some unknown constant.

0.1,if x=0

kx, if x=1or2
k(5—Xx), if x=30r4
0, otherwise

P(X=X) =

(a) Find the value of k.

(b) What is the probability that you study at least two hours ? Exactly two hours? At
most two hours?

Solution The probability distribution of X is

X | 0 1 [ 2 3
PX) | 0.1 k | 2k | 2k | k

M-

(a) We know that =1

i=1

Therefore 0.1 +k+2k+2k+k=1
ie. k=0.15
(b) P(you study at least two hours) =P(X=2)
=P(X=2)+P(X=3)+P(X=4)
=2k+2k+k=5k=5x0.15=0.75

P(you study exactly two hours) =P(X=2)
=2k=2x0.15=0.3
P(you study at most two hours) =P(X<2)

=PX=0)+PX=1)+P(X=2)
=0.1+k+2k=0.1+3k=0.1+3x0.15
=0.55

13.6.2 Mean of arandom variable

In many problems, it is desirable to describe some feature of the random variable by
means of a single number that can be computed from its probability distribution. Few
such numbers are mean, median and mode. In this section, we shall discuss mean only.
Mean is a measure of location or central tendency in the sense that it roughly locates a
middle or average value of the random variable.
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Definition 6 Let X be a random variable whose possible values X, X,, X, ..., X occur
with probabilities p,, p,, P,,..., P,, respectively. The mean of X, denoted by L, is the

n
number z % P, i.e. the mean of X is the weighted average of the possible values of X,
i=1
each value being weighted by its probability with which it occurs.
The mean of a random variable X is also called the expectation of X, denoted by
E(X).
n

Thus, EX)=pu= XP=xp+txp +..+x0p,
i1
In other words, the mean or expectation of a random variable X is the sum of the
products of all possible values of X by their respective probabilities.

Example 27 Let a pair of dice be thrown and the random variable X be the sum of the
numbers that appear on the two dice. Find the mean or expectation of X.

Solution The sample space of the experiment consists of 36 elementary events in the
form of ordered pairs (X, Y,), where x = 1,2,3,4,5,6andy =1, 2, 3,4, 5, 6.

The random variable X i.e. the sum of the numbers on the two dice takes the
values 2, 3,4,5,6,7,8,9,10, 11 or 12.

1
Now  PX=2)=PH{(LD}) ¢

2
PX=3)=P({(1,2), 2D} 3¢

3
P(X=4)=P({(1,3),2.2, 3.0} 3¢

4
PX=35)=P({(1.4),(2,3).3.2). (4.1)}) 3¢
5
P(X=6)=P({(1,5), (2,4), 3,3), (4,2). 5, )}) 3¢
PX=7) =P({(1,6),(2,5). 3:4),(4.3),(5.2), (6,)}) 3¢

5
P(X'=8) =P({(2,6), (3,5), (4:4),(5.3), (6,2)}) 3¢
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4
P(X=9)= P({(3.6),(4.5),(54),(63))) 3¢
3
P(X = 10) = P({(4:6). (5.5). 64)}) 5
- 2
PXX= 1) = P({(5:6).(6.9)]) 5

1
PX=12)=P({(6.6)}) 3¢

The probability distribution of X is

X or X 2 134|567 |89 101 | 12

. 112|134 |56 (54321
X)or P36 136 136 |36 [36 | 36 |36 |36 |36 |36 | 36

Therefore,

=EX)= Zn: o} —2><i+3><£+4><i+5><i
H Y T TR Y

> 72839110111212L

6 —
36 36 36 36 36 36 36

2 6 12 20 30 42 40 36 30 22 12
36

Thus, the mean of the sum of the numbers that appear on throwing two fair dice is 7.

=7

13.6.3 Variance of a random variable

The mean of a random variable does not give us information about the variability in the
values of the random variable. In fact, if the variance is small, then the values of the
random variable are close to the mean. Also random variables with different probability
distributions can have equal means, as shown in the following distributions of X and Y.

X 1

4
2
8

| | o
oW | W

1
P(X) 3
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Y -1 0 4 5 6
o] L2t
) 8 8 8 8 8
1 2 3 2 22
= Ix—42x=43x=+4x—="2=275
Clearly E(X) 2 2 2 P
1 2 3 1 1 22
= —IXx—+0Xx—4+4x—+5x—= 6x—=—=2.75
and E(Y) § 8 8 8 8 8

The variables X and Y are different, however their means are same. It is also
casily observable from the diagramatic representation of these distributions (Fig 13.5).

P(X) P(Y)

Ys 1 Ys
2/8 T 2/ 8

1/8 4 |_| |_|1/8

0V 1 2 3 4 -1 OI 1 2 3

® (ii)
Fig 13.5

To distinguish X from Y, we require a measure of the extent to which the values of

2} —
o [—1

w
IN
|

the random variables spread out. In Statistics, we have studied that the variance is a
measure of the spread or scatter in data. Likewise, the variability or spread in the
values of a random variable may be measured by variance.

Definition 7 Let X be a random variable whose possible values X, X,,...,X_occur with

probabilities p(X,), P(X,),..., P(X,) respectively.
Let i = E (X) be the mean of X. The variance of X, denoted by Var (X) or 2 is
defined as

X

o = Var(X)=Y (% -’ p(x)

i=1

or equivalently C =EX -y
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The non-negative number

= | Var(X) \/Z(x —w)’ p(x)

is called the standard deviation of the random variable X.
Another formulato find the variance of a random variable. We know that,

or

or

Var (X)

(% =)’ p(x)
i=1

= (¢ 1 2ux%)p(x)

i1

DX px)+ D p(x) = 2ux p(x)
i=1 i=1 i=1

Il
M:

X7 p(x)+p’ Z p(%)— 2MZX. p(%)

1l
—

x> p(x)+p’ —2u° [smceZpOﬁ) landp= ZXD(X)}

Il
EM:

x* p(x)—p?

[
M:

n n 2
Var (X) = Y% p(x)—(Z& p(&)}
i=1

i=l

Var (X) = E(X2) — [E(X)]%, where E(X2) = Zn: x> p(%)
i=1

Example 28 Find the variance of the number obtained on a throw of an unbiased die.

Solution The sample space of the experiment is S = {1, 2, 3, 4, 5, 6}.

Let X denote the number obtained on the throw. Then X is a random variable
which can take values 1, 2, 3, 4, 5, or 6.
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Also P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = %

Therefore, the Probability distribution of X is

X 1 2 3 4 5 6

P(X)

|~
|~
|~

LI
6 | 6| 6

n

Now EX)= % p(%)

il

= 1><l+2><l+3><l+4><l+5><l+6><l=2
6 6 6 6 6 6 6

1 1 1 1 1 1 91
2) = P 2P Xt 3 Xt P X+ P = 6P x— = —
Also B 6 6 6 6 6 6 6

Thus, Var (X) = E (X?) — (E(X))

9L (217 91 441 35
6 \6 6 36 12

Example 29 Two cards are drawn simultaneously (or successively without replacement)
from a well shuffled pack of 52 cards. Find the mean, variance and standard deviation

of the number of kings.

Solution Let X denote the number of kings in a draw of two cards. X is a random
variable which can assume the values 0, 1 or 2.

48!

48 AR I
, C, 2!(48 2)! 48 47 188
Now P(X=0)=P (no kin 2 91
(X =0) = P (no king) ¢, 521 52 51 221

2152 2)!

4o Be
P(X =1) = P (one king and one non-king) 2#
2

4x48x2 32

52x51 221
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‘C, 4x3 1
2C,  52x51 221

and P(X =2)=P (two kings) =

Thus, the probability distribution of X is

X 0 1 2
188 32 1
221 | 221 | 221

n

Now Mean of X=EX)= % P(X)
1

P(X)

188 . 32 1 34
= Ox—+Ix—+2x—=—
21 221 7221 221
8 2
Also ECC) = 2% P(%)
i=1

><ﬁ+12 ><£+22 X I _36

= (? .
221 221 221 221

Now Var(X) = E(X?) — [E(X)]?

_ ﬁ(ﬁjz_ 6800
221 \221) (221)°

Therefore o, = Var(X) = gi?o =0.37

|EXERCISE 13.4]

1. State which of the following are not the probability distributions of a random
variable. Give reasons for your answer.

| x]lo |1 |2

PX)| 04 | 0402

i) | x o |1 [2 | 3|4

PX)| 0.1 | 05] 02 [-0.1] 03
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i) [ Y -1 To [1
P(Y)| 06| 01| 02

ivw [z [3 [2 [1 o [+
Pz)| 03 [ 02 | 04 | 0.1 0.05

An urn contains 5 red and 2 black balls. Two balls are randomly drawn. Let X
represent the number of black balls. What are the possible values of X? Is X a
random variable ?

Let X represent the difference between the number of heads and the number of
tails obtained when a coin is tossed 6 times. What are possible values of X?

Find the probability distribution of
(1) number of heads in two tosses of a coin.

(i) number of tails in the simultaneous tosses of three coins.

(i) number of heads in four tosses of a coin.

Find the probability distribution of the number of successes in two tosses of a die,
where a success is defined as

(i) number greater than 4

(i) six appears on at least one die

From a lot of 30 bulbs which include 6 defectives, a sample of 4 bulbs is drawn
at random with replacement. Find the probability distribution of the number of
defective bulbs.

A coin is biased so that the head is 3 times as likely to occur as tail. If the coin is
tossed twice, find the probability distribution of number of tails.

A random variable X has the following probability distribution:

XJo[1]2]3]a[s[e] 7
)| o | k [ 2k] 2k| 3k| k2 [ 2k 7ke+k

Determine
@ k (i) P(X <3)
(i) P(X > 6) (iv) P(0 <X <3)
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The random variable X has a probability distribution P(X) of the following form,
where K is some number :

k, if x=0
2k, if x=1
3Kk, if x=2

0, otherwise

P(X) =

(a) Determine the value of k.
(b) FindP (X<2), P(X<2),PX2=2).
Find the mean number of heads in three tosses of a fair coin.

Two dice are thrown simultaneously. If X denotes the number of sixes, find the
expectation of X.

Two numbers are selected at random (without replacement) from the first six
positive integers. Let X denote the larger of the two numbers obtained. Find
E(X).

Let X denote the sum of the numbers obtained when two fair dice are rolled.
Find the variance and standard deviation of X.

A class has 15 students whose ages are 14, 17, 15, 14,21, 17, 19, 20, 16, 18, 20,
17, 16, 19 and 20 years. One student is selected in such a manner that each has
the same chance of being chosen and the age X of the selected student is
recorded. What is the probability distribution of the random variable X? Find
mean, variance and standard deviation of X.

In a meeting, 70% of the members favour and 30% oppose a certain proposal.

A member is selected at random and we take X = 0 if he opposed, and X =1 if
he is in favour. Find E(X) and Var (X).

Choose the correct answer in each of the following:

16.

17.

The mean of the numbers obtained on throwing a die having written 1 on three
faces, 2 on two faces and 5 on one face is

8
A) 1 (B) 2 ©) 5 D) 3

Suppose that two cards are drawn at random from a deck of cards. Let X be the
number of aces obtained. Then the value of E(X) is

37 5 1 2
(A) "1 (B) e ©) el (D) e
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13.7 Bernoulli Trialsand Binomial Distribution

13.7.1 Bernoulli trials

Many experiments are dichotomous in nature. For example, a tossed coin shows a
‘head’ or ‘tail’, a manufactured item can be ‘defective’ or ‘non-defective’, the response
to a question might be ‘yes’ or ‘no’, an egg has ‘hatched’ or ‘not hatched’, the decision
is ‘yes’ or ‘no’ etc. In such cases, it is customary to call one of the outcomes a ‘success’
and the other ‘not success’ or ‘failure’. For example, in tossing a coin, if the occurrence
of the head is considered a success, then occurrence of tail is a failure.

Each time we toss a coin or roll a die or perform any other experiment, we call it a
trial. If a coin is tossed, say, 4 times, the number of trials is 4, each having exactly two
outcomes, namely, success or failure. The outcome of any trial is independent of the
outcome of any other trial. In each of such trials, the probability of success or failure
remains constant. Such independent trials which have only two outcomes usually
referred as ‘success’ or ‘failure’ are called Bernoulli trials.

Definition 8 Trials of a random experiment are called Bernoulli trials, if they satisfy
the following conditions :
(i) There should be a finite number of trials.
(i) The trials should be independent.
(iii) Each trial has exactly two outcomes : success or failure.
(iv) The probability of success remains the same in each trial.

For example, throwing a die 50 times is a case of 50 Bernoulli trials, in which each
trial results in success (say an even number) or failure (an odd number) and the
probability of success (p) is same for all 50 throws. Obviously, the successive throws
of the die are independent experiments. If the die is fair and have six numbers 1 to 6

1
written on six faces, then p= 5 andq=1-p= 5" probability of failure.

Example 30 Six balls are drawn successively from an urn containing 7 red and 9 black
balls. Tell whether or not the trials of drawing balls are Bernoulli trials when after each
draw the ball drawn is

(i) replaced (i) not replaced in the urn.

Solution

(1) The number of trials is finite. When the drawing is done with replacement, the

7
probability of success (say, red ball) is p= 16 which is same for all six trials

(draws). Hence, the drawing of balls with replacements are Bernoulli trials.
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(i) When the drawing is done without replacement, the probability of success

(i.e., red ball) in first trial is 16’ in 2nd trial is T if the first ball drawn is red or

5 if the first ball drawn is black and so on. Clearly, the probability of success is

not same for all trials, hence the trials are not Bernoulli trials.

13.7.2 Binomial distribution

Consider the experiment of tossing a coin in which each trial results in success (say,
heads) or failure (tails). Let S and F denote respectively success and failure in each
trial. Suppose we are interested in finding the ways in which we have one success in
six trials.

Clearly, six different cases are there as listed below:
SFFFFF, FSFFFF, FFSFFF, FFFSFF, FFFFSF, FFFFFS.

6!
Similarly, two successes and four failures can have ;™5 combinations. It will be

lengthy job to list all of these ways. Therefore, calculation of probabilities of 0, 1, 2,...,
N number of successes may be lengthy and time consuming. To avoid the lengthy
calculations and listing of all the possible cases, for the probabilities of number of
successes in N-Bernoulli trials, a formula is derived. For this purpose, let us take the
experiment made up of three Bernoulli trials with probabilities p and g =1 — p for
success and failure respectively in each trial. The sample space of the experiment is
the set

S = {SSS, SSF, SES, FSS, SFF, FSF, FFS, FFF}
The number of successes is a random variable X and can take values 0, 1, 2, or 3.
The probability distribution of the number of successes is as below :

P(X =0) = P(no success)
= P({FFF}) = P(F) P(F) P(F)
=(.(.q= ¢ since the trials are independent

P(X =1) =P(one successes)
= P({SFF, FSF, FFS})
= P({SFF}) + P({FSF}) + P({FFS})
=P(S) P(F) P(F) + P(F) P(S) P(F) + P(F) P(F) P(S)
=p.g.q+ g.p.q+ q.0.p = 3pg

P(X=2)=P (two successes)
= P({SSF, SFS, FSS})
= P({SSF}) + P ({SFS}) + P({FSS})
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=P(S) P(S) P(F) + P(S) P(F) P(S) + P(F) P(S) P(S)
=p.p.g. + p.gp + qp.p = 3p’q

and P(X = 3) = P(three success) = P ({SSS})
=P(S) . P(S) . P(S) = p*

Thus, the probability distribution of X is

X 0 1 2

PX)| a® | 3g°p| 3qp*| p’

Also, the binominal expansion of (q + p)* is

CI3 + 3CI2 p+ 3qp2 + P3
Note that the probabilities of 0, 1, 2 or 3 successes are respectively the 1st, 2nd,
3rd and 4th term in the expansion of (q + p)*.
Also, since g+ p= 1, it follows that the sum of these probabilities, as expected, is 1.

Thus, we may conclude that in an experiment of n-Bernoulli trials, the probabilities
of 0, 1, 2,..., nsuccesses can be obtained as 1st, 2nd,...,(n + 1)" terms in the expansion
of (g+ p)". To prove this assertion (result), let us find the probability of X-successes in
an experiment of n-Bernoulli trials.

Clearly, in case of X successes (S), there will be (n — X) failures (F).

n!
) ways.

Now, X successes (S) and (n — X) failures (F) can be obtained in m

In each of these ways, the probability of X successes and (n — X) failures is

= P(X successes) . P(n—X) failures is

_ P(S).P(S)..P(S) P(F).P(F)..P(F) _

n—-x
Xtimes (n X) times px q
n!
Thus, the probability of X successes in Nn-Bernoulli trials is mpx g+
or an pX quX
Thus P(X successes) = "C,p*q"™, x=0,1,2,.,n.(q=1-p)

Clearly, P(x successes), i.e. "C,p*q"*is the (X + 1)™ term in the binomial
expansion of (q + p).

Thus, the probability distribution of number of successes in an experiment consisting
of n Bernoulli trials may be obtained by the binomial expansion of (q+ p)". Hence, this
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distribution of number of successes X can be written as
X 0 1 2 X n
P (X) nCO qn nCl qn—lpl nc2 qn—2p2 nCX qn—pr nCn pn

The above probability distribution is known as binomial distribution with parameters
n and p, because for given values of n and p, we can find the complete probability
distribution.

The probability of X successes P (X = X) is also denoted by P (X) and is given by
P(xX) ="C,qvp, x=0,1,.,n(q=1-p)
This P (x) is called the probability function of the binomial distribution.

A binomial distribution with n-Bernoulli trials and probability of success in each
trial as p, is denoted by B(n, p).

Let us now take up some examples.
Example 31 If a fair coin is tossed 10 times, find the probability of
(i) exactly six heads
(ii) at least six heads

(iii) at most six heads

Solution The repeated tosses of a coin are Bernoulli trials. Let X denote the number
of heads in an experiment of 10 trials.

1
Clearly, X has the binomial distribution with n=10 and p= )

Therefore PX=x)="Cg~p,x=0,1,2,.,n
Her n=10 1 g-= l-p= <
cre » p 5 :q p_ 2
1 10—x 1 X 1 10
Therefore P(X=x)="C,| = —| ="c,| =
2 2 2
N ) PX=6)="C 1 10——10! 1105
ow () PX=0="%6( 7] T 2" 512

(i) P(at least six heads) = P(X = 6)
=PX=6)+P(X=7)+P(X=8)+P(X=9)+P (X=10)
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1 10 1 10 1 10 1 10 1 10
10 10 10 10 10

Col=| +C|=| +7C|=| +7°C|=| +7Cp|=

6(2) 7@ 8@ 9(2) “’@

10! 10! 10! 10! 1001 193

6! 4! 7! 3! &l 2l 9! 1! 100 2'° 512

(i) P(at most six heads) = P(X < 6)
=PX=0+PX=1)+P(X=2)+PX=3)
+P(X=4)+P(X=5+P(X=06)

10 10 10 10
(3] wals) els) el
2 2 2 2
10 10 10
1 1 1
L g, (5) +hc, (5) ¢, (5)

848 53

1024 64

Example 32 Ten eggs are drawn successively with replacement from a lot containing
10% defective eggs. Find the probability that there is at least one defective egg.

Solution Let X denote the number of defective eggs in the 10 eggs drawn. Since the
drawing is done with replacement, the trials are Bernoulli trials. Clearly, X has the

. SE . 10 1
binomial distribution withn=10 and P 100 10°
Therefore q=1- p—i
10
Now P(at least one defective egg) =P(X=>1)=1-P (X=0)
—1=-1¢ (i)m _ _ﬂ
’L10 10

|EXERCISE 135

1. A die is thrown 6 times. If ‘getting an odd number’ is a success, what is the

probability of
(i) 5 successes? (i) at least 5 successes?

(ii)) at most 5 successes?



10.

PROBABILITY 571

A pair of dice is thrown 4 times. If getting a doublet is considered a success, find
the probability of two successes.

There are 5% defective items in a large bulk of items. What is the probability
that a sample of 10 items will include not more than one defective item?

Five cards are drawn successively with replacement from a well-shuffled deck
of 52 cards. What is the probability that

(i) all the five cards are spades?
(i) only 3 cards are spades?
(iii) none is a spade?
The probability that a bulb produced by a factory will fuse after 150 days of use
is 0.05. Find the probability that out of 5 such bulbs
(1) none
(i) not more than one
(i) more than one
(iv) at least one

will fuse after 150 days of use.

A bag consists of 10 balls each marked with one of the digits 0 to 9. If four balls
are drawn successively with replacement from the bag, what is the probability
that none is marked with the digit 0?

In an examination, 20 questions of true-false type are asked. Suppose a student
tosses a fair coin to determine his answer to each question. If the coin falls
heads, he answers 'true'; if it falls tails, he answers 'false’. Find the probability
that he answers at least 12 questions correctly.

Suppose X has a binomial distribution B 6, % . Show that X = 3 is the most
likely outcome.

(Hint : P(X = 3) is the maximum among all P(x), x =0,1,2,3,4,5,6)

On a multiple choice examination with three possible answers for each of the

five questions, what is the probability that a candidate would get four or more
correct answers just by guessing ?

A person buys a lottery ticket in 50 lotteries, in each of which his chance of
winning a prize is 100" What is the probability that he will win a prize

(a) at least once (b) exactly once (c) at least twice?
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Find the probability of getting 5 exactly twice in 7 throws of a die.
Find the probability of throwing at most 2 sixes in 6 throws of a single die.

It is known that 10% of certain articles manufactured are defective. What is the
probability that in a random sample of 12 such articles, 9 are defective?

In each of the following, choose the correct answer:

In a box containing 100 bulbs, 10 are defective. The probability that out of a
sample of 5 bulbs, none is defective is
o (3)
10

1 5
(B) (5)

1
The probability that a student is not a swimmer is 5 Then the probability that

A) 10 D2
(4) D) 74

out of five students, four are swimmers is

4 '
) ¢, Gj 5 (B) [g] -

4
© 1@)

(D) None of these
5\5

Miscellaneous Examples

Example 33 Coloured balls are distributed in four boxes as shown in the following

table:

Box Colour
Black White Red Blue
I 3 4 5 6
11 2 2 2 2
111 1 2 3 1
v 4 3 1 5

A box is selected at random and then a ball is randomly drawn from the selected
box. The colour of the ball is black, what is the probability that ball drawn is from the
box III?
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Solution Let A, E, E,, E; and E, be the events as defined below :
A :ablack ball is selected E, : box Iis selected
E, : box Il is selected E, : box Ill is selected
E,: box IV is selected

Since the boxes are chosen at random,
1
Therefore P(E,) =P(E,) =P(E,) =P(E) = 1

3 2 1 4
Also P(AIE) = 12 P(AIE,) = 2, P(AIE) = — and P(AIE) = 3

P(box III is selected, given that the drawn ball is black) = P(E,|A). By Bayes'
theorem,

P(E;) P(A[E;)

P(E A) = P(E,)P(AE,) P(E,)P(A[E,)+P(E;)P(A|E,) P(E,)P(AE,)
11
477
T3 11 1 1 1 & 06
—X— 4+ —X—4+—X—4+—X—
4718 4 4 4 7 4 13

1
Example 34 Find the mean of the Binomial distribution B 4,5 .

Solution Let X be the random variable whose probability distribution is B 4,5 .

H n=4 ! d 1 1_2
ere =4,p= — an =l-—=—
P 3 a 3 3
4-x X
4 2 1
We know that P(X=x)="C, (5) (5) ,X=0,1,2,3,4.
1.€. the distribution of X is
X, P(x,) X, P(x)
2 4
4
c. =
0 03 0
271 271
3 3 3 3
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2 2 2 2
1 1
2 4C2 - 5 2 4CZ = 5
3 3
i, 21 34c, 2 1
3 C3 B B 3 3
4
1 4 4 1
4 4c4 5 4 C4 5
4
Now Mean (H):in P(X)
i=1
2V (1 2V (1Y 2 1° 1
=0+%C| =] | = |+2-%C,| 2| |=| +3%C, = - 4°C, =
" ‘(3) [3} 2(3] (3) "33 ‘3

3 2
4><§—4+2><6><§—4+3><4><3£4+4><1><3i4

32+48+24+4 108 4
34 81 3

3
Example 35 The probability of a shooter hitting a target is 1 How many minimum

number of times must he/she fire so that the probability of hitting the target at least
once is more than 0.99?

Solution Let the shooter fire n times. Obviously, n fires are N Bernoulli trials. In each

3
trial, p = probability of hitting the target = 1 and q = probability of not hitting the

1 1 n-x 3 X 3x
Now, given that,
P (hitting the target at least once) > 0.99
ie. P(x=1)>0.99
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Therefore, 1-P(x=0)>099
1
or 1- nC04—n > 0.99
no 1 .1
or C04—n 0.01 i.e. n <0.01
4n > L 100 1
or ool .. (1)

The minimum value of n to satisfy the inequality (1) is 4.
Thus, the shooter must fire 4 times.

Example 36 A and B throw a die alternatively till one of them gets a ‘6” and wins the
game. Find their respective probabilities of winning, if A starts first.

Solution Let S denote the success (getting a ‘6”) and F denote the failure (not getting
a ‘o).
1

5
Thus, P(S) = o P(F)=g

1
P(A wins in the first throw) = P(S) = S

A gets the third throw, when the first throw by A and second throw by B result into
failures.

| D
| W
N~

Therefore, P(A wins in the 3rd throw) = P(FFS) = P(F)P(F)P(S)=

5 1
P(A wins in the 5th throw) = P (FFFFS) 5 6 and so on.

‘ 1 | 541
Hence, P(A Wll’lS)Zg 5 6 5 6
1
__6 _6
25 1
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. . 6 5
P(B wins) =1 — P (A wins) = 1 TERT]

Remark Ifa+ar +ar?+ ... +ar"! + ..., where |r| < 1, then sum of this infinite G.P.

a
is given by T_r (Refer A.1.3 of Class XI Text book).

Example 37 If a machine is correctly set up, it produces 90% acceptable items. If it is
incorrectly set up, it produces only 40% acceptable items. Past experience shows that
80% of the set ups are correctly done. If after a certain set up, the machine produces
2 acceptable items, find the probability that the machine is correctly setup.

Solution Let A be the event that the machine produces 2 acceptable items.

Also let B, represent the event of correct set up and B, represent the event of
incorrect setup.

Now P(B,) = 0.8, P(B,) = 0.2
P(A|B,) = 0.9 x 0.9 and P(AB,) = 0.4 x 0.4
P(B,)P(AB
Therefore P(B,A) = (B)) P(AIB))

P(B,)P(AB,)+P(B,) P(AIB,)

0.8%0.9x0.9 648 os
0.8x0.9%x0.9+02x0.4x04 680

Miscellaneous Exercise on Chapter 13

1. A and B are two events such that P (A) # 0. Find P(B|A), if
(i) Ais asubset of B @i AnB=0
2. A couple has two children,

(i) Find the probability that both children are males, ifit is known that at least
one of the children is male.

(ii) Find the probability that both children are females, if it is known that the
elder child is a female.
3. Suppose that 5% of men and 0.25% of women have grey hair. A grey haired
person is selected at random. What is the probability of this person being male?
Assume that there are equal number of males and females.

4. Suppose that 90% of people are right-handed. What is the probability that
at most 6 of a random sample of 10 people are right-handed?
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11.

12.
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An urn contains 25 balls of which 10 balls bear a mark 'X' and the remaining 15
bear a mark "Y'. A ball is drawn at random from the urn, its mark is noted down
and it is replaced. If 6 balls are drawn in this way, find the probability that

(1) all will bear 'X"' mark.
(ii) not more than 2 will bear "Y' mark.
(i) at least one ball will bear "Y' mark.

(iv) the number of balls with 'X' mark and "Y' mark will be equal.

In a hurdle race, a player has to cross 10 hurdles. The probability that he will

5
clear each hurdle is rx What is the probability that he will knock down fewer
than 2 hurdles?

A die is thrown again and again until three sixes are obtained. Find the probabil-
ity of obtaining the third six in the sixth throw of the die.

If a leap year is selected at random, what is the chance that it will contain 53
tuesdays?

An experiment succeeds twice as often as it fails. Find the probability that in the
next six trials, there will be atleast 4 successes.

How many times must a man toss a fair coin so that the probability of having
at least one head is more than 90%?

In a game, a man wins a rupee for a six and loses a rupee for any other number
when a fair die is thrown. The man decided to throw a die thrice but to quit as
and when he gets a six. Find the expected value of the amount he wins / loses.

Suppose we have four boxes A,B,C and D containing coloured marbles as given
below:

Box Marble colour

Red White Black
A 1 6 3
B 6 2 2
C 8 1 1
D 0 6 4

One of the boxes has been selected at random and a single marble is drawn from

it. If the marble is red, what is the probability that it was drawn from box A?, box B?,
box C?
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14.

15.

16.
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Assume that the chances of a patient having a heart attack is 40%. It is also
assumed that a meditation and yoga course reduce the risk of heart attack by
30% and prescription of certain drug reduces its chances by 25%. At a time a
patient can choose any one of the two options with equal probabilities. It is given
that after going through one of the two options the patient selected at random
suffers a heart attack. Find the probability that the patient followed a course of
meditation and yoga?

If each element of a second order determinant is either zero or one, what is the
probability that the value of the determinant is positive? (Assume that the indi-
vidual entries of the determinant are chosen independently, each value being

1
assumed with probability ) ).

An electronic assembly consists of two subsystems, say, A and B. From previ-
ous testing procedures, the following probabilities are assumed to be known:

P(A fails) = 0.2
P(B fails alone) = 0.15
P(A and B fail) = 0.15
Evaluate the following probabilities
(i) P(A fails|B has failed) (i) P(A fails alone)
Bag I contains 3 red and 4 black balls and Bag II contains 4 red and 5 black balls.
One ball is transferred from Bag I to Bag Il and then a ball is drawn from Bag II.

The ball so drawn is found to be red in colour. Find the probability that the
transferred ball is black.

Choose the correct answer in each of the following:

17.

18.

19.

If A and B are two events such that P(A) # 0 and P(B | A) = 1, then

(A) AcB (B) BCc A (C) B=9¢ (D) A=0

If P(A|B) > P(A), then which of the following is correct :

(A) P(BJA) < P(B) (B) P(AnB)<P(A).P(B)

(C) P(B|A) > P(B) (D) P(B|A) = P(B)

If A and B are any two events such that P(A) + P(B) — P(A and B) = P(A), then
(A) P(BJA) =1 (B) P(AIB) =1

(C) P(BJA)=0 (D) P(A[B) =0
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Summary
The salient features of the chapter are —

@ The conditional probability of an event E, given the occurrence of the event F
. P(ENF)
is given by P(E|F)=———2,P(F)#0
g 7 EEE )= ® (F)

¢ 0<SPEPR<], P (E’|F)=1-P (E[F)
P ((EuU F)|G) =P (E|G) + P (F|G) —P ((En F)|G)
¢ PEEn F)=P(E)P (FE),P(E)#0
P(EnN F)=P () P(EIF),P (F)=0
¢ IfE and F are independent, then
P(EnN F)=P(E)P (F)
P (E[F)=P (E),P (F) =0
P (FIE) =P (F), P(E) # 0
¢ Theorem of total praobability

Let {E, E,, ...,.E,) be a partition of a sample space and suppose that each of
E, E,, ..., E_has nonzero probability. Let A be any event associated with S,
then
P(A)=PE)P (A[E)+P(E)P (AE) +..+P (E)PAE)

¢ Bayes theorem IfE , E,, ..., E  are events which constitute a partition of
sample space S,i.e. E,E,, ..., E_are pairwise disjointandE 4 E,4 ..4 E =S
and A be any event with nonzero probability, then

P(E;)P(AJE;)
n
P(E;)P(AE))
i

P(E; |A)

# A random variable is a real valued function whose domain is the sample
space of a random experiment.

@ The probability distribution of a random variable X is the system of numbers

X : X, X, X,

PX) : P, P, P,

n
where, p >0, Z p=Li=12,.,n

i=1
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¢ Let X be arandom variable whose possible values X, X, X,, ..., X occur with

probabilities p,, p,, P,, ... P, respectively. The mean of X, denoted by W, is

n
the number %P .

il
The mean of a random variable X is also called the expectation of X, denoted
by E (X).
Let X be a random variable whose possible values X, X, ..., X, occur with
probabilities p(X,), P(X,), ..., P(X ) respectively.
Let = E(X) be the mean of X. The variance of X, denoted by Var (X) or

n
6,7, is defined as C Var(X)= A (% wpx)

i1
or equivalently ¢ >=E (X — )’
The non-negative number

x \/Var(X)=\/ (% w’px)

il

is called the standard deviation of the random variable X.
Var (X) = E (X?) - [EX)]
Trials of a random experiment are called Bernoulli trials, if they satisfy the
following conditions :
(1) There should be a finite number of trials.

(i) The trials should be independent.

(iii) Each trial has exactly two outcomes : success or failure.

(iv) The probability of success remains the same in each trial.
For Binomial distribution B (n, p), P (X =X)="C_q™ p, x=0, 1,..,n
=1-p

Historical Note

The earliest indication on measurement of chances in game of dice appeared

in 1477 in a commentary on Dante's Divine Comedy. A treatise on gambling
named liber de Ludo Alcae, by Geronimo Carden (1501-1576) was published
posthumously in 1663. In this treatise, he gives the number of favourable cases
for each event when two dice are thrown.
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Galileo (1564-1642) gave casual remarks concerning the correct evaluation
of chance in a game of three dice. Galileo analysed that when three dice are
thrown, the sum of the number that appear is more likely to be 10 than the sum 9,
because the number of cases favourable to 10 are more than the number of
cases for the appearance of number 9.

Apart from these early contributions, it is generally acknowledged that the
true origin of the science of probability lies in the correspondence between two
great men of the seventeenth century, Pascal (1623-1662) and Pierre de Fermat
(1601-1665). A French gambler, Chevalier de Metre asked Pascal to explain
some seeming contradiction between his theoretical reasoning and the
observation gathered from gambling. In a series of letters written around 1654,
Pascal and Fermat laid the first foundation of science of probability. Pascal solved
the problem in algebraic manner while Fermat used the method of combinations.

Great Dutch Scientist, Huygens (1629-1695), became acquainted with the
content of the correspondence between Pascal and Fermat and published a first
book on probability, "De Ratiociniisin Ludo Aleae" containing solution of many
interesting rather than difficult problems on probability in games of chances.

The next great work on probability theory is by Jacob Bernoulli (1654-1705),
in the form of a great book, "Ars Conjectendi" published posthumously in 1713
by his nephew, Nicholes Bernoulli. To him is due the discovery of one of the most
important probability distribution known as Binomial distribution. The next
remarkable work on probability lies in 1993. A. N. Kolmogorov (1903-1987) is
credited with the axiomatic theory of probability. His book, ‘Foundations of
probability’ published in 1933, introduces probability as a set function and is
considered a ‘classic!’.



Chapter

(APPLICATION OF INTEGRALS)

+$ One should study Mathematics because it is only through Mathematics that
nature can be conceived in harmonious form. — BIRKHOFF <

8.1 Introduction

In geometry, we have learnt formulae to calculate areas
of various geometrical figures including triangles,
rectangles, trapezias and circles. Such formulae are
fundamental in the applications of mathematics to many
real life problems. The formulae of elementary geometry
allow us to calculate areas of many simple figures.
However, they are inadequate for calculating the areas
enclosed by curves. For that we shall need some concepts
of Integral Calculus.

In the previous chapter, we have studied to find the
area bounded by the curve y = f (X), the ordinates X = a,
X =b and x-axis, while calculating definite integral as the
limit of a sum. Here, in this chapter, we shall study a specific 1
application of integrals to find the area under simple curves, A.L. Cauchy
area between lines and arcs of circles, parabolas and (1789-1857)
ellipses (standard forms only). We shall also deal with finding
the area bounded by the above said curves.

8.2 Area under Simple'Curves

In the previous chapter, we have studied
definite integral as the limit of a sum and
how to evaluate definite integral using y=f )

Fundamental Theorem of Calculus. Now, / e———

o)
7

/=

we consider the easy and intuitive way of
finding the area bounded by the curve §
y =f(X), x-axis and the ordinates X =a and
X = b. From Fig 8.1, we can think of area y
under the curve as composed of large x=a
number of very thin vertical strips. Consider
an arbitrary strip of height y and width dx,
then dA (area of the elementary strip)=ydx, X<g P dx Q X

where, y = f(X). N Fig 8.1
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This area is called the elementary area which is located at an arbitrary position
within the region which is specified by some value of x between @ and b. We can think
of the total area A of the region between x-axis, ordinates X = a, X = b and the curve
y =f (x) as the result of adding up the elementary areas of thin strips across the region
PQRSP. Symbolically, we express Y

y=d
A= IabdAzj:ydx =j: f(x) dx
The area A of the region bounded by dy — \
the curve X = g (), y-axis and the linesy = c, x=g0)
y =d is given by 8
d d y=c
A= Jc xdy = j'c g(y)dy X'%L >X
Here, we consider horizontal strips as shown in Y’
the Fig 8.2 Fig 8.2

Remark If the position of the curve under consideration is below the X-axis, then since

f(x) <0 from x =ato x =b, as shown in Fig 8.3, the area bounded by the curve, X-axis

and the ordinates X = a, X =b come out to be negative. But, it is only the numerical

value of the area which is taken into consideration. Thus, if the area is negative, we
b

j . f (x) dx

take its absolute value, i.e.,

X% />x
0 7Zx=b
N\ X=a
A%
%

v

Y’ Fig8.3

Generally, it may happen that some portion of the curve is above X-axis and some is
below the x-axis as shown in the Fig 8.4. Here, A| <0 and A, > 0. Therefore, the area
A bounded by the curve y = f (X), x-axis and the ordinates X = a and x = b is given
by A=A | +A,.
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Y
N
A,
x=b
X'< >X
(0]
xX=a
v A]
Y'

Fig 8.4

Example 1 Find the area enclosed by the circle X2 +y2= a2

Solution From Fig 8.5, the whole area enclosed
by the given circle

= 4 (area of the region AOBA bounded by
the curve, x-axis and the ordinates x= 0 and
X = a) [as the circle is symmetrical about both
X-axis and y-axis] X-

B|(0, @)

Ag, 0)

=4 Ioa ydX (taking vertical strips)

= 4'[2\/a2—x2 dx
Since X2 +y2 = a2 gives y= J_r\/az —x?

Y/

Fig8.5

As the region AOBA lies in the first quadrant, y is taken as positive. Integrating, we get

the whole area enclosed by the given circle

2 a
= 4B\/a2 -X + a?sin'1 i}
0
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Alternatively, considering horizontal strips as shown in Fig 8.6, the whole area of the
region enclosed by circle Y

a a B 09
— 4"y =4[ @y dy  (Why?) Q.9
X
y L &y o
_AY s 8 Y
_4{2 a -y + 2sm al A(a,O)X

X/

(0]
a a’ .
=4 — 0 —sin 1 O
2 2
a2n 2
=42 ,
2 Y
Y ,~ Fig8.6

Example 2 Find the area enclosed by the ellipse X—2 F 1
a

Solution From Fig 8.7, the area of the region ABA’B’A bounded by the ellipse

3 area of theregion AOBA inthe first quadrant bounded
B bythecurve, x —axisand theordinatesx= 0,x =a

(as the ellipse is symmetrical about both X-axis and y-axis)

=4 I: ydx (takingverticalstrips)

22
X b
Now ? }l:/)_z =1gives Y 3 a’> x , but as the region AOBA lies in the first
quadrant, y is taken as positive. So, the required area is
b Y
= 4_[ *24a% - xZdx
°a
B|(0, b)

X
a

a
EoEfE S K \H\
0 A A
X X
4 (-a,0) O & (a, 0)
:;{ —><0+—s1n 1) O}

B, (03_ b)

4b a° n
= —= =—nab Y’
a 22 Fig 8.7
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Alternatively, considering horizontal strips as Y
shown in the Fig 8.8, the area of the ellipse is
B| (0, b)
b
— 4 f xdy = 4% Jo? y2dy (Why?) m%
0 X A A X
- a, 0) o @ 0)
4a y ’ -1 y
= —sin =
0 B’|(0,— b)
2 Y
- i E><O+b—sin711 -0 Fig8.8
b ({2 2
4a b?
_ _a.b_E: ab
b 22

8.2.1 The area of the region bounded by,a‘curve and auline

In this subsection, we will find the area of the region bounded by a line and a circle,
a line and a parabola, a line and an ellipse. Equations of above mentioned curves will be
in their standard forms only as the cases in other forms go beyond the scope of this

textbook. Y
Example 3 Find the area of the region bounded ~ x’=y 1
by the curve y = x? and the line y = 4. k N é y=4
Solution Since the given curve represented by dy X
the equation y = X? is a parabola symmetrical
about y-axis only, therefore, from Fig 8.9, the 5 R
required area of the region AOBA is given by X< 0 >X
4
2 . xdy = NG
Fig 8.9
, areaof theregion BONB bounded by curve, y — axis
and thelines y=0and y=4
2 3¢
=2 dy=2 =y — 8 = ?
_[ \/_ yay = 3 3 (Why?)

0

Here, we have taken horizontal strips as indicated in the Fig 8.9.
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Alternatively, we may consider the vertical
strips like PQ as shown in the Fig 8.10 to
obtain the area of the region AOBA. To this
end, we solve the equations x*=y and y = 4

which gives X =-2 and X = 2.

Thus, the region AOBA may be stated as
the region bounded by the curve y=x2,y =4

and the ordinates x=-2 and x = 2.
Therefore, the area of the region AOBA

[

5 Y
x=y N
Q 4
A N B
x=2
x=-2 Ly
yP
X< ) >X
y
Y/
Fig 8.10

[y = (y-coordinate of Q) — (y-coordinate of P) =4 — x2]

- 2'[02(4— ) (Why?)

32 8
“olax-X| 2422 32
3, 3.3

Remark From the above examples, it is inferred that we can consider either vertical
strips or horizontal strips for calculating the area of the region. Henceforth, we shall
consider either of these two, most preferably vertical strips.

Example 4 Find the area of the region in the first quadrant enclosed by the X-axis,

the line y = X, and the circle x>+ y>=32.
Solution The given equations are

y= X . (D

and xX*+y’= 32 .. (2)

Solving (1) and (2), we find that the line
and the circle meet at B(4, 4) in the first
quadrant (Fig 8.11). Draw perpendicular
BM to the x-axis.

Therefore, the required area = area of
the region OBMO + area of the region
BMAB.

Now, the area of the region OBMO

Jo4ydx=I:xdx .. (3)

Y
N
y=x
B
4,4)
A
X'/ \X
M
0 (44/2,0)
v
YV
Fig 8.11
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Again, the area of the region BMAB

= J:Jiydx: I44J5J32— x> dx

1 1 x 1P
{— xA32— 32 + = x 32 x sinl—}
2 2 42,

l4\/5 0o L 3 s LN T
2 2 2 2

V2
=8n—(8+4n)=4n -8 .. (4)
Adding (3) and (4), we get, the required area = 4.

2 2
X
Example 5 Find the area bounded by the ellipse ? )k;_z 1 and the ordinates x = 0

and X = ae, where, b2=2a2 (1 —e?) and e < I.

Solution The required area (Fig 8.12) of the region BOB’RFSB is enclosed by the
ellipse and the lines X = 0 and x =ae. %

Note that the area of the region BOB’RFSB

b B S X =ae
= 2f " ydx = 2—_[:5\/a2 —x2dx
a : F(ae,)
X< ! >X
N

a2 2 a

ae
bix 5 a . ;X
— _{_ a2 _X2 4 — Sin l_

0

b .
= —[aew/a2 —a’e’ +a2s1n“eJ v
a
Fig 8.12

2
2
- ab[e\h —e? +sin”! e}

|EXERCISE 8.1|
1. Find the area of the region bounded by the curve *» = x and the lines x = 1,
X =4 and the Xx-axis.

2. Find the area of the region bounded by y* = 9x, X =2, X = 4 and the X-axis in the
first quadrant.
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Find the area of the region bounded by ¥* =4y, y =2, y = 4 and the y-axis in the
first quadrant.

X2 2
Find the area of the region bounded by the ellipse e y? 1.

X2 y2
Find the area of the region bounded by the ellipse ey 1.

Find the area of the region in the first quadrant enclosed by x-axis, line x =43 y
and the circle x>+ y? = 4.

Find the area of the smaller part of the circle x* +y* = @’ cut off by the line X= % :
The area between X = y? and X = 4 is divided into two equal parts by the line
X = @, find the value of a.

Find the area of the region bounded by the parabolay = X and y = |X|.

Find the area bounded by the curve x* = 4y and the line x = 4y — 2.
Find the area of the region bounded by the curve y> = 4x and the line x = 3.

Choose the correct answer in the following Exercises 12 and 13.

12

13

8.3

. Area lying in the first quadrant and bounded by the circle X* +y?= 4 and the lines

X=0and Xx=21s

T T T
(A) B) 3 © 3 (D) 5

. Area of the region bounded by the curve y?> = 4x, y-axis and the line y= 3 is

9 9 9
(A) 2 ®) 3 © 3 (D) 5

Area between Two Curves

Intuitively, true in the sense of Leibnitz, integration is the act of calculating the area by
cutting the region into a large number of small strips of elementary area and then
adding up these elementary areas. Suppose we are given two curves represented by
y =1(x),y=g(x), wheref(x) >2g(x) in [a, b] as shown in Fig 8.13. Here the points of
intersection of these two curves are given by X = a and X = b obtained by taking
common values of y from the given equation of two curves.

For setting up a formula for the integral, it is convenient to take elementary area in

the form of vertical strips. As indicated in the Fig 8.13, elementary strip has height
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f(X) — g(x) and width dx so that the elementary area

Y y=fx)

N
dx _y=fx)-gx
) K
/
X =a y =g
x=b
X<g >X
V,
Y Fig 8.13

dA = [f(X) — g(X)] dx, and the total area A can be taken as

A= [ TF0-g0oldx
Alternatively,
A = [area bounded by y = f (X), x-axis and the lines X = a, X = b]
— [area bounded by y = g (x), X-axis and the lines x =a, X =b]

_ j:f(x)dx—[:g(x)dx =j:[f(x)—g(x)]dx, where f (X) > g (x) in [a, b]

Iff (X)>g(x)in[a, ¢] and f (X) £g (X) in [c, b], where a < ¢ < b as shown in the
Fig 8.14, then the area of the regions bounded by curves can be written as
Total Area = Area of the region ACBDA + Area of the region BPRQB

[T 0-g0]de+] [g 00~ F(0]dx

y=g®
Y y=f P
C

/2

Q y=f

x=c x=b

>X
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Example 6 Find the area of the region bounded by the two parabolas y =x* and y* = x.

Solution The point of intersection of these two Y ,
parabolas are O (0, 0) and A (1, 1) as shown in y=x )
the Fig 8.15. xX=y
Here, we can set y2 = X or y =4/x = f(X) and y = X2 @D
= g(X), where, f (X) > g (x) in [0, 1].

“ X

Therefore, the required area of the shaded region X 0o

_ I;[f(x)—g(x)]dx

:J.I[\,;—xz}dx %x% X—31 N

0 3, Fig 815
2 01 1

3 3 3
Example 7 Find the area lying above x-axis and included between the circle
x?+ y? = 8x and inside of the parabola y* = 4x.

Solution The given equation of the circle xX* + y2 = 8x can be expressed as
(X — 4y + y2 = 16. Thus, the centre of the Y
circle is (4, 0) and radius is 4. Its intersection K
with the parabola y* =4X gives

X2 + 4x = 8X
or X2 —4x =0
or XX—-4)=0
or x=0,x=4

P4,4)

o C (4,0) QGO

Thus, the points of intersection of these
two curves are O(0,0) and P(4,4) above the
X-axis.

From the Fig 8.16, the required area of

the region OPQCO included between these v
two curves above X-axis is Y

= (area of the region OCPO) + (area of the region PCQP)
4 8
= IO ydx+j4ydx

= 2 WX+ [ [# —(x-4Pdx (Why?)

Fig 8.16
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R
=2 3 X2 J4 t2dt, where, x 4 t (Why?)
0o O
4
22 ! 4% t? 1 4? sin*]L
3 2 2 4
4
_32 4 0 1 4 sin'l = 0 8§ = 2 4 = —(8+3m)
302 2 2 3 3

Example 8 In Fig 8.17, AOBA is the part of the ellipse 92 + y2 = 36 in the first
quadrant such that OA = 2 and OB = 6. Find the area between the arc AB and the

chord AB.

2 2
Solution Given equation of the ellipse 9x2 + y*= 36 can be expressed as T X 1 or
22 X
el 1and hence, its shape is as given in Fig 8.17. B (0. 6)
Accordingly, the equation of the chord AB is
0= N (x 2)
y 0 2 X'¢ %) AZD) >X
or y=-3(Xx-2)
or y=—3Xx+6
Area of the shaded region as shown in the Fig 8.17.
=3 02\/4 —xdx—[ 02 6-3xdx  (Why?) !
Y/
> 2 2 Fig 8.17
3 X Lant X ey X
2 2 0
-3Z 0 2sin'() 12 % 3 2 g 6=3m—6
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Example 9 Using integration find the area of region bounded by the triangle whose
vertices are (1, 0), (2, 2) and (3, 1). Y

Solution Let A(1, 0), B(2,2)and C(3, 1) be
the vertices of a triangle ABC (Fig 8.18).
Area of AABC

= Area of AABD + Area of trapezium
BDEC — Area of AAEC

Now equation of the sides AB, BC and X o A, O)i) E
CA are given by

B(2,2)

. Y Fig 8.18
y=2(x-1),y=4-xy= > (X — 1), respectively.

Hence, area of A ABC = If2 (X—l)dX+_[23(4—X) dX—I :X—;l dx
2 2 273 1 x2 3
FE N
2 1 2.0 202 1
RISy R
2 2 2 2 21\ 2 2

3

2
Example 10 Find the area of the region enclosed between the two circles: X* +y* =4
and (X — 2)* +y*=4.
Solution Equations of the given circles are
X2 +y*=4 .. (D %

and X-=22+yr=4 .. (2)

Equation (1) is a circle with centre O at the
origin and radius 2. Equation (2) is a circle with

centre C (2, 0) and radius 2. Solving equations
(1) and (2), we have

X
(X2 +y =x+y
or X —4x+4+y =x+y
or X =1 which gives y = +J3
Thus, the points of intersection of the given
. . Y’
circles are A(1, +f3) and A’(1, —[3 ) as shown in Fig 8.19

the Fig 8.19.



APPLICATION OF INTEGRALS 371

Required area of the enclosed region O ACA’O between circles
= 2 [area of the region ODCAOQ] (Why?)
= 2 [area of the region ODAO + area of the region DCAD]

= Z:J';ydxﬂ.lzydx}

= 2_I;,/4—(x—2)2dx+jlzd4—xzdx} (Why?)
— 1

) % (x— 24— (x - 2)° +%x4sin1 (XT_ZH

2

0

+ 2[% X4 —x* +%><4sin_1 %}

1

r 1
= (x—2)\/4—(x—2)2 +4sin1(x;2ﬂ +[x\/4—x2 +4Sinlﬂ
L 0

2

2

1

= (—\E +4sin™ (;)j—%inl(—l)} + [4 sin”'1—+/3 —4sin™’ %}

()] (550

t—\ﬁ—%un}(m—\l——%’tj
=8? 23

|EXERCISE 8.2

Find the area of the circle 4x* + 4y* = 9 which is interior to the parabola x*= 4y.
Find the area bounded by curves (X — 1)>+ y*=1and xX*+y*= 1.

3. Find the area of the region bounded by the curvesy =x>+2, y=X,x =0 and
X=3.

4. Using integration find the area of region bounded by the triangle whose vertices
are (— 1, 0), (1, 3) and (3, 2).

5. Using integration find the area of the triangular region whose sides have the
equationsy=2x+1,y=3x+ 1 and x =4.
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Choose the correct answer in the following exercises 6 and 7.

6. Smaller area enclosed by the circle X* + y> =4 and the line x +y =2 is
(D) 2(m+2)

(A) 2(r-2) (B) m-2 (C) 2 -1

7. Area lying between the curves y? = 4x and y = 2X is

2 1 1
(A) 3 (B) 3 ©) 1

Miscellaneous Examples

3
(D) 1

Example 11 Find the area of the parabolay” = 4ax bounded by its latus rectum.

Solution From Fig 8.20, the vertex of the parabola
y? = 4ax is at origin (0, 0). The equation of the
latus rectum LSL” is X = a. Also, parabola is
symmetrical about the x-axis.
The required area of the region OLL'O

= 2 (area of the region OLSO)

Y

/

]J

- 2J.0aydx = 2J.Oa@ dx 0

=2x2J§jOa\/§dx
3 a
= 4\/5><§{X5}
0

3
SRla| 82
3 3

Example 12 Find the area of the region bounded
by the line y = 3x + 2, the x-axis and the ordinates
X==landx = 1.

Y/

SN

Solution As shown in the Fig 8.21, the line

2
y = 3X + 2 meets Xx-axis atX = T and its graph

2
lies below x-axis for X l,? and above

x-axis for X ?2,1 .

Y/
Fig 8.21
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The required area = Area of the region ACBA + Area of the region ADEA

2

j:?(3x+ 2)dx{+j;(3x+2)dx
3

Example 13 Find the area bounded by Y
N
the curve y = cosX between X = 0 and
A E
X = 2m. \
Solution From the Fig 8.22, the required ,,_ B D 21
<o T am F N
area = area of the region OABO + area EWT
of the region BCDB + area of the region
C
A4
DEFD. G i 822
Thus, we have the required area ge
T 3n
> > 2n
= J. *cosxdx + J. ? cosxdx +J. cos X dx
0 7\1 3n
2 7z
- 3 5
. 2 . 2 .
= sinX smx_ smx3_ % ;
g : R 4x
Q 4,4)
=1+2+1=4

Example 13 Prove that the curves y* = 4x and x*> = 4y

divide the area of the square bounded by x = 0, X = 4, X'<g

y =4 and y = 0 into three equal parts.

Solution Note that the point of intersection of the
parabolas y? = 4x and x> = 4y are (0, 0) and (4, 4) as

4
Y/
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shown in the Fig 8.23.
Now, the area of the region OAQBO bounded by curves y>= 4x and x> = 4y.

2 3 3
otk Kogxe o 22 X
0 4 3 12
0
_32 16 16 .
=3 3 3 . (D

Again, the area of the region OPQAO bounded by the curves X* =4y, x =0, x = 4
and X-axis

2
- Xy Lot s )
0 4 12 03
Similarly, the area of the region OBQRO bounded by the curve \* = 4x, y-axis,
y=0andy=4

4 ay? 1 4 16
= xd —dy —y — .. (3
S I T ©)

From (1), (2) and (3), it is concluded that the area of the region OAQBO = area of
the region OPQAQ ='area of the region OBQRO, i.e., area bounded by parabolas
y? = 4x and x?>= 4y divides the area of the square in three equal parts.

Example 14 Find the area of the region Y
{GY):0<Sy<x*+1,0<y<x+1,0<x<2}

Solution Let us first sketch the region whose area is to
be found out. This region is the intersection of the
following regions.

A =)0y St 1, Xl
A, ={(Xy):0Sy<x+1} v
and A, = {(Xy):0Sx<2} Fig 8.24

The points of intersection of y = x>+ 1 and y= X+ 1 are points P(0, 1) and Q(1, 2).
From the Fig 8.24, the required region is the shaded region OPQRSTO whose area
= area of the region OTQPO + area of the region TSRQT

- ‘[;(x2+1) dx+I12(x+1)dx (Why?)
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ACRIRCE

oo {22

Miscellaneous Exercise on Chapter 8

Find the area under the given curves and given lines:
(1) y=x2,x=1,x =2 and x-axis
(i) y=x* x=1,x =5 and x-axis

Find the area between the curves y = x-and y = X%

Find the area of the region lying in the first quadrant and bounded by y = 4x2,
Xx=0,y=1andy=4.

Sketch the graph of y = |X 3| and evaluate ‘ |x 3|dx.
6

Find the area bounded by the curve y = sin X between x = 0 and x = 2n.
Find the area enclosed between the parabola y* = 4ax and the line y= mx.

Find the area enclosed by the parabola 4y = 3x* and the line 2y = 3x + 12.

2 2
Find the area of the smaller region bounded by the ellipse X? +y7 =1 and the

line

w | <
N <
7.

22
Find the area of the smaller region bounded by the ellipse ; :;—2 1 and the

X
line — Y 1.
a

b

Find the area of the region enclosed by the parabola ¥* =y, the line y = x + 2 and
the x-axis.

Using the method of integration find the area bounded by the curve |x| |y| 1.

[Hint: The required region is bounded by linesx+y=1,x-y=1,-x+y=1and
-x-y=1].
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12. Find the area bounded by curves {(X,y) : y = x?and y = |X|}.

13. Using the method of integration find the area of the triangle ABC, coordinates of
whose vertices are A(2, 0), B (4, 5) and C (6, 3).

14. Using the method of integration find the area of the region bounded by lines:
2X+y=4,3x—-2y=6and x—-3y+5=0
15. Find the area of the region {(X, y) : y> < 4X, 4x> + 4y> < 9}
Choose the correct answer in the following Exercises from 16 to 20.

16. Area bounded by the curve y =X?, the x-axis and the ordinates X=—2 and x=1'is

-15 15 17
(A) -9 B) -~ © = (D) 5

17. The area bounded by the curve y = X | X |, X-axis and the ordinates X=— 1 and
X =1 1is given by

(A) 0 (B) L ©) 2 (D) 2
3 3 3
[Hint: y=x2if x>0 andy = - x> if x < 0].

18. The area of the circle x> + y* = 16 exterior to the parabola y* = 6x is

(A) %(475—\/5) (B) %(4n+\/§) (©) %(815—\/?:) (D) %(8n+\/§)

T
19. The area bounded by the y-axis, y = cos X and y = sin X when 0<X SE is

(A) 262-1)  (B) J72-1 ©) 72 +1 D) 2

Summary
@ The area of the region bounded by the curve y = f (X), X-axis and the lines
x=aand x= Db (b > a) is given by the formula: AmazI:de= j: f(x)dx.
@ The area of the region bounded by the curve X = ¢ (y), y-axis and the lines

d d
y =¢, y =d is given by the formula: Area:'fc Xdy:jC ¢ (y)dy .
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@ The area of the region enclosed between two curves y = f (x),y = g (X) and
the lines X= a, X =b is given by the formula,

Area=[ [ £(x)~g(0]dx. where, f (X)> g (x) in [a, b]
¢Iff(xX)2g (X)infa,cland f (X) £ g (x) in [c, b], a < ¢ < b, then

Area=| [ f(x)—g(x)]dx+j:[g(x)— £ (0]dx .

Historical Note

The origin of the Integral Calculus goes back to the early period of development
of Mathematics and it is related to the method of exhaustion developed by the
mathematicians of ancient Greece. This method arose in the solution of problems
on calculating areas of plane figures, surface areas and volumes of solid bodies
etc. In this sense, the method of exhaustion can be regarded as an early method
of integration. The greatest development of method of exhaustion in the early
period was obtained in the works of Eudoxus (440 B.C.) and Archimedes
(300 B.C.)

Systematic approach to the theory of Calculus began in the 17th century.
In 1665, Newton began his work on the Calculus described by him as the theory
of fluxions and used his theory in finding the tangent and radius of curvature at
any point on a curve. Newton introduced the basic notion of inverse function
called the anti derivative (indefinite integral) or the inverse method of tangents.

During 1684-86, Leibnitz published an article in the Acta Eruditorum
which he called Calculas summatorius, since it was connected with the summation
of a number of infinitely small areas, whose sum, he indicated by the symbol ‘[’.
In 1696, he followed a suggestion made by J. Bernoulli and changed this article to
Calculus integrali. This corresponded to Newton’s inverse method of tangents.

Both Newton and Leibnitz adopted quite independent lines of approach which
was radically different. However, respective theories accomplished results that
were practically identical. Leibnitz used the notion of definite integral and what is
quite certain is that he first clearly appreciated tie up between the antiderivative
and the definite integral.

Conclusively, the fundamental concepts and theory of Integral Calculus
and primarily its relationships with Differential Calculus were developed in the
work of P.de Fermat, I. Newton and G. Leibnitz at the end of 17th century.

377
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However, this justification by the concept of limit was only developed in the
works of A.L. Cauchy in the early 19th century. Lastly, it is worth mentioning the
following quotation by Lie Sophie’s:

“It may be said that the conceptions of differential quotient and integral which
in their origin certainly go back to Archimedes were introduced in Science by the
investigations of Kepler, Descartes, Cavalieri, Fermat and Wallis .... The discovery
that differentiation and integration are inverse operations belongs to Newton
and Leibnitz”.

J

> ——



Chapter

(DIFFERENTIAL EQUATIONS)

+«» He who seeks for methods without having a definite problem in mind
seeks for the most part in vain. — D. HILBERT <

9.1 Introduction
In Class XI and in Chapter 5 of the present book, we FEEEHEESIN LSS,
discussed how to differentiate a given function fwith respect :
to an independent variable, i.e., how to find f*(x) for a given
function f at each x in its domain of definition. Further, in
the chapter on Integral Calculus, we discussed how to find
a function f whose derivative is the function g, which may
also be formulated as follows:

For a given function g, find a function f such that

Y g(x), where'y =f(x) (1)
dx
An equation of the form (1) is known as a differential Henri Poincare

equation. A formal definition will be given later. (1854-1912)

These equations arise in a variety of applications, may it be in Physics, Chemistry,
Biology, Anthropology, Geology, Economics etc. Hence, an indepth study of differential
equations has assumed prime importance in all modern scientific investigations.

In this chapter, we will study some basic concepts related to differential equation,
general and particular solutions of a differential equation, formation of differential
equations, some methods to solve a first order - first degree differential equation and
some applications of differential equations in different areas.

9.2 Basic Concepts

We are already familiar with the equations of the type:
x*-3x+3=0 .. (1)
sinx+cosx=0 .. (2)
X+y=7 .. (3
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Let us consider the equation:

X ﬂ+ y=0 (4)

I
We see that equations (1), (2) and (3) involve independent and/or dependent variable
(variables) only but equation (4) involves variables as well as derivative of the dependent
variable y with respect to the independent variable x. Such an equation is called a

differential equation.

In general, an equation involving derivative (derivatives) of the dependent variable
with respect to independent variable (variables) is called a differential equation.

A differential equation involving derivatives of the dependent variable with respect
to only one independent variable is called an ordinary differential equation, e.g.,

2 3
2 d—! + (ﬂ) = 0 isan ordinary differential equation .. (5)

dx dx

Of course, there are differential equations involving derivatives with respect to
more than one independent variables, called partial differential equations but at this
stage we shall confine ourselves to the study of ordinary differential equations only.
Now onward, we will use the term “differential equation’ for ‘ordinary differential
equation’.

1. We shall prefer to use the following notations for derivatives:
dy 0 d 2 y " d 3y "
==Y ===Y /==Y
dx dx dx
2. For derivatives of higher order, it will be inconvenient to use so many dashes
n
as supersuffix therefore, we use the notationy_for nth order derivative (; Z .
X

9.2/1. “Order of a differential equation

Order of a differential equation is defined as the order of the highest order derivative of
the dependent variable with respect to the independent variable involved in the given
differential equation.

Consider the following differential equations:

o = e ... (6)
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—+y =0 .. (7

d’y d?y )
(d—j(d— =0 - ®)

The equations (6), (7) and (8) involve the highest derivative of first, second and
third order respectively. Therefore, the order of these equations are 1, 2 and 3 respectively.

9.2.2 Degree of a differential equation

To study the degree of a differential equation, the key point is that the differential
equation must be a polynomial equation in derivatives, 1.e.,y’,y”, y” etc. Consider the

following differential equations:

d3y _(d?%y ’ dy
+2 +y =0 .. (9
dx® {dx2 dx y ®
(ﬂszr(d—yj—sinzy =0 (10)
dx dx
dy . dy)
—4+SIn| — | =
™ (dx 0 (1)

77

\We observe that equation (9) is a polynomial equation iny”, y”andy’, equation (10)
is a polynomial equation iny” (not a polynomial iny though). Degree of such differential
equations can be defined. But equation (11) is not a polynomial equation in y” and
degree of such a differential equation can not be defined.

By the degree of a differential equation, when it is a polynomial equation in
derivatives, we mean the highest power (positive integral index) of the highest order
derivative involved in the given differential equation.

In view of the above definition, one may observe that differential equations (6), (7),
(8) and (9) each are of degree one, equation (10) is of degree two while the degree of
differential equation (11) is not defined.

Order and degree (if defined) of a differential equation are always
positive integers.
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Example 1 Find the order and degree, if defined, of each of the following differential
equations:

dy d?y (dyjz dy

iy —=-cosx=0 i) xy— —| -y=—==0
Olre (i) Xy X5 ) Y

(i) y"+y*+e’ =0

Solution

d
(i) The highest order derivative present in the differential equation is d—i SO its

d
order is one. Itis a polynomial equation iny” and the highest power raised to d—i

is one, so its degree is one.
2

d
(i) The highest order derivative present in the given differential equation is dey ,S0

d2
its order is two. It is'a polynomial equation in KZ and % and the highest
2
. y . . .
power raised to W is one, so its degree is one.

(iii) The highest order derivative present in the differential equation is y", so its

order is three. The given differential equation is not a polynomial equation in its
derivatives and so its degree is not defined.

|[EXERCISE 9.1|

Determine order and degree (if defined) of differential equations given in Exercises
1to 10.

d4y H " (dsj‘l dzs
1. —=+sin =0 2. yv+5/=0 3 | =] +3s—=0
o oy dt dt?
2., )2 2
4. (d—Zj +C°5(d—yj=0 5. d—Z=cos:3x+sin3x
dx dx dx

6. () + P+ ) +y° =0 1oy 2y =0
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8. y+y=¢ 9. y"+(y)>’+2y=0 10. y"+2y" +siny=0
11. The degree of the differential equation

2.\3 2
(d—Zj +(ﬂJ +sin(ﬂj+1:0 is
dx dx dx

(A) 3 (B) 2 © 1 (D) notdefined
12. The order of the differential equation
d? .
dx dx
(A) 2 B) 1 (0, (D) notdefined

9.3. General and Particular Solutions of a Differential Equation
In earlier Classes, we have solved the equations of the type:
X2+1=0 .. (1)
sin?x —cosx=0 .. (2)
Solution of equations (1) and (2) are numbers, real or complex, that will satisfy the

given equation i.e., when that number is substituted for the unknown x in the given
equation, L.H.S. becomes equal to the R.H.S..

d 2
Now consider the differential equation dTZ/Jr y=0 .. (3)

In contrast to the first two equations, the solution of this differential equation is a
function ¢ that will satisfy it i.e., when the function ¢ is substituted for the unknowny
(dependent variable) in the given differential equation, L.H.S. becomes equal to R.H.S..

The curve y = ¢ (x) is called the solution curve (integral curve) of the given
differential equation. Consider the function given by

y =¢ (x) =asin (x + b), .. (4)
where a, b € R. When this function and its derivative are substituted in equation (3),
L.H.S. =R.H.S.. So it is a solution of the differential equation (3).

Let aand b be given some particular values say a=2 and b =% , then we get a

function y=0,x) = 25in(x+§) .. (5)

When this function and its derivative are substituted in equation (3) again
L.H.S. = R.H.S.. Therefore ¢, is also a solution of equation (3).
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Function ¢ consists of two arbitrary constants (parameters) a, b and it is called
general solution of the given differential equation. Whereas function ¢, contains no
arbitrary constants but only the particular values of the parameters a and b and hence
is called a particular solution of the given differential equation.

The solution which contains arbitrary constants is called the general solution
(primitive) of the differential equation.

The solution free from arbitrary constants i.e., the solution obtained from the general
solution by giving particular values to the arbitrary constants is called a particular
solution of the differential equation.

Example 2 Verify that the function y = e * is a solution of the differential equation

d’y dy
V.Y ey=0
dx?  dx y

Solution Given function is y =e~3* Differentiating both sides of equation with respect
to x, we get

dy -3x
— =-3e - (1
% 1)
Now, differentiating (1) with respect to x, we have
2
d—z =9e ¥
dx

2
Substituting the values of Ky& andy in the given differential equation, we get

LHS. =9 e*+ (-3e*) -6e*=9e*-9e*=0=RH.S..
Therefore, the given function is a solution of the given differential equation.
Example 3 Verify that the functiony = a cos x+ b sin x, where, a, be R is a solution
2
of the differential equation d_¥+ y=0
dx

Solution The given function is

y=acos x + bsin x D)
Differentiating both sides of equation (1) with respect to x, successively, we get
dy

— =—asinx + b cosx
dx

2

—ZI =—acosx —b sinx
dx
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d2
Substituting the values of KZ andy in the given differential equation, we get

LHS. =(-acosx—-bsinx)+ (acosx+bsinx)=0=R.H.S.
Therefore, the given function is a solution of the given differential equation.

|EXERCISE 9.2]

In each of the Exercises 1 to 10 verify that the given functions (explicit or implicit) isa
solution of the corresponding differential equation:

1. y=e+1 Dy’ -y =0

2. y=x*+2x+C oy -2x-2=0

3. y=cosx+C : Yy +sinx=0
Xy

= 2 : /=

4oy =1+x YRR

5. y=Ax DXy =y (x#0)

6. y=xsinx : xy’=y+x,/x2_y2 (xz0andx>yorx<-y)
2

7. xy=logy+C : y=1_xy (xy#1)

8. y—cosy=x : (ysiny+cosy+x)y =y

9. x+y=tanly LYY Y +1=0

10. y= ,/32_)(2 XxXe(-aa: x+y ;—di =0(y=#0)

11. The number of arbitrary constants in the general solution of a differential equation
of fourth order are:
(A) 0 (B) 2 () 3 (D) 4

12 . Thenumber of arbitrary constants in the particular solution of a differential equation
of third order are:

(A) 3 (B) 2 ©) 1 (D) 0
9.4 Formation of a Differential Equation whose General Solution is given
We know that the equation
X2+ P +2x—4y+4=0 . (1)
represents a circle having centre at (-1, 2) and radius 1 unit.
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Differentiating equation (1) with respect to x, we get

dy x+1
— = (yz2 . (2
=y 02 2)
which is a differential equation. You will find later on [See (example 9 section 9.5.1.)]
that this equation represents the family of circles and one member of the family is the
circle given in equation (1).
Let us consider the equation

X2 +y*=r? .. (3)
By giving different values to r, we get different members of the family e.g.
X2+y?=1,x2+y? =4, x2+y2= 9 etc. (see Fig 9.1).
Thus, equation (3) represents a family of concentric A
circles centered at the origin and having different radii.

We are interested in finding a differential equation
that is satisfied by each member of the family. The
differential equation must be free from r because r is X" %)
different for different members of the family. This
equation is obtained by differentiating equation (3) with
respect to x, i.e.,

dy dy v
2x+2y&:0 or x+y&=0 . (4) Fig9.1
which represents the family of concentric circles given by equation (3).
Again, let us consider the equation
y=mx+c .. (5)
By giving different values to the parameters m and c, we get different members of
the family, e.qg.,

y =X (m=1, ¢c=0)

y=B3x (m=43, c=0)

y=x+1 (m=1,c¢c=1)

y=-X (m=-1, c=0)

y=-x-1 (m=-1, c=-1)etc. ( see Fig 9.2).

Thus, equation (5) represents the family of straight lines, where m, ¢ are parameters.

We are now interested in finding a differential equation that is satisfied by each
member of the family. Further, the equation must be free from m and ¢ because m and
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¢ are different for different members of the family. y O 2
This is obtained by differentiating equation (5) with %
respect to X, successively we get » g
Q
N\
+
dy d?y
—=m,and —=0 . (6) x7e >
dx dx? ©) x'< >X

The equation (6) represents the family of straight
lines given by equation (5).

Note that equations (3) and (5) are the general
solutions of equations (4) and (6) respectively.

Fig9.2

9.4.1 Procedure to form a differential equation ‘that.will represent’a given
family of curves

(a) If the given family F, of curves depends on only one parameter then it is

represented by an equation of the form
F,(x,y,a)=0

- (D)

For example, the family of parabolas y? = ax can be represented by an equation

of the form f (x, y, a) :y* = ax.

Differentiating equation (1) with respect to x, we get an equation involving

Y, ¥, X and a, i.e.,
gx,y,y,a=0

. (2

The required differential equation is then obtained by eliminating a from equations

(1) and (2) as
F(xy,y)=0

. (3

(b) If the given family F, of curves depends on the parameters a, b (say) then it is

represented by an equation of the from
F, x,y,a,b)=0

. (4

Differentiating equation (4) with respect to x, we get an equation involving

Yy, %y, a, b, ie.,
g(xy y,ab)=0

. (5

But it is not possible to eliminate two parameters a and b from the two equations
and so, we need a third equation. This equation is obtained by differentiating

equation (5), with respect to x, to obtain a relation of the form
h(xyVY,y,ab)=0

. (6)
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The required differential equation is then obtained by eliminating a and b from
equations (4), (5) and (6) as

Fxyy,y)=0 . (7

|@= Note | The order of a differential equation representing a family of curves is

same as the number of arbitrary constants present in the equation corresponding to
the family of curves.

Example 4 Form the differential equation representing the family of curves y = mx,
where, m is arbitrary constant.

Solution We have

y = mx .. (1)
Differentiating both sides of equation (1) with respect to x, we get
Y om
dx
I . ) dy
Substituting the value of m in equation (1) we get Y & X
or X (;—i -y=0

which is free from the parameter m and hence this s the required differential equation.

Example 5 Form the differential equation representing the family of curves
y =asin (x +b), where a, b are arbitrary constants.

Solution We have

y=asin(x +b) .. (1)
Differentiating both sides of equation (1) with respect to x, successively we get
2 acos(x +h) 2)
dX - en
d?y .
W=—asm(x+b) .. (3)
Eliminating a and b from equations (1), (2) and (3), we get
oY= . (4)

which is free from the arbitrary constants aand b and hence this the required differential
equation.
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Example 6 Form the differential equation Y
representing the family of ellipses having foci on
x-axis and centre at the origin.

Solution We know that the equation of said family X<
of ellipses (see Fig 9.3) is

2 2
Y
2

X
S+t =1 .. (1) Y’
a® b Fig 9.3
Differentiating equation (1) with respect to x, we get 2—;( +% % =0
a X
2
y dyj_ b
or === — . (2
X (dx a’ @
Differentiating both sides of equation (2) with respect to x, we get
dy
y &y ety
x  dx? X dx
d’y dy °  dy
XYy —— X — —y— =0 .. (3
or Vi dx A edX @)

which is the required differential equation.

Example 7 Form the differential equation of the family
of circles touching the x-axis at origin.

S
N

Solution Let C denote the family of circles touching
x-axis at origin. Let (0, a) be the coordinates of the
centre of any member of the family (see Fig 9.4).
Therefore, equation of family C is

X2+ (y—ay=a2 orx? +y?= 2ay - (1) 5

where, ais an arbitrary constant. Differentiating both
sides of equation (1) with respect to x,we get
dy dy Y

2X Zy& = Za& Fig 9.4
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dy
or X yﬂ—a— ora=ﬂ (2)
o Ix &
dx
Substituting the value of a from equation (2) in equation (1), we get
dy
&
X2 +y?=2y &
dx
or Y yoy =20 292 Y
dx dx
dy _2xy
or dx — x?=y?

This is the required differential equation of the given family of circles.

Example 8 Form the differential equation representing the family of parabolas having
vertex at origin and axis along positive direction of x-axis.

Solution Let P denote the family of above said parabolas (see Fig 9.5) and let (a, 0) be the
focus of amember of the given family, where a is an arbitrary constant. Therefore, equation
of family P is

y? = 4ax .. (1)
Differentiating both sides of equation (1) with respect to x, we get
d
2y_y =4a (2)
dx %
Substituting the value of 4a from equation (2) A
in equation (1), we get
)
y? = (Zy — () X- L
dX N [0 (a’o) >X
d
or yr—2xy XL =g
dx
which is the differential equation of the given family ;f

of parabolas. Fig 9.5
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|EXERCISE 9.3|

In each of the Exercises 1 to 5, form a differential equation representing the given
family of curves by eliminating arbitrary constants a and b.

1.

4.
6.

10.

11.

12.

X
E+%= 2.y=a(’-¥) 3. y=aeX+be™

y =e* (a+ bx) 5. y=¢€(acosx+bsinx)
Form the differential equation of the family of circles touching the y-axis at
origin.
Form the differential equation of the family of parabolas having vertex at origin
and axis along positive y-axis.
Form the differential equation of the family of ellipses having foci on y-axis and
centre at origin.
Form the differential equation of the family of hyperbolas having foci on x-axis
and centre at origin.
Form the differential equation of the family of circles having centre on y-axis
and radius 3 units.
Which of the following differential equations hasy = ¢, ex+ ¢, e~as the general
solution?

d? d? d? d?
(A) gz +Y=0 (B) 5F=Y=0 (C) 53 +1=0 (D) -1=0
Which of the following differential equations has y = x as one of its particular
solution?

d?y ,dy d’y _dy

(A) W—xza+xy:x (B) o+ Xy X=X
d?y ,dy d’y _dy

(C) ? XZ& xy 0 (D) ?+X&+Xy:0

9.5/ Methods of Solving First Order, First Degree Differential Equations

In this section we shall discuss three methods of solving first order first degree differential
equations.

9.5.1 Differential equations with variables separable
A first order-first degree differential equation is of the form

Y _
ol F(x,y) .. (1)
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If F (X, y) can be expressed as a product g (x) h(y), where, g(X) is a function of x
and h(y) is a function of y, then the differential equation (1) is said to be of variable
separable type. The differential equation (1) then has the form

dy
—=h : . (2
o =h .9k @)
If h(y)# 0, separating the variables, (2) can be rewritten as
- dy =g(x) d 3)
— dy =g(x) dx
h(y) =9
Integrating both sides of (3), we get
1
——dy = | g(x)dx .. (4)
h(y) J
Thus, (4) provides the solutions of given differential equation in the form
Hy) =G(x)+C

Here, H (y) and G (x) are the anti derivatives of ﬁ and g (x) respectively and

C is the arbitrary constant.

Example 9 Find the general solution of the differential equation % =X—+1 ,(y#2)
X

Solution We have

dy X+1
dx  2-y . (1)
Separating the variables in equation (1), we get
2-y)dy =(x+1)dx .. (2)

Integrating both sides of equation (2), we get
j(z— y)dy = j(x +1)dx

2 2

y X
or 2y—2— = — 4+ x+C
y > 5 1
or X2+y2+2X—4y+2C1:0
or X +y?+2x—4y + C =0, where C = 2C,

which is the general solution of equation (1).
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dy 1+y°

Example 10 Find the general solution of the differential equation — = T
+ X

Solution Since 1 + y* # 0, therefore separating the variables, the given differential
equation can be written as

dy  dx
1+y? 14+
Integrating both sides of equation (1), we get

dy ¢ ox
I1+y2 - I1+x2

- (D)

or tanty =tan'x + C
which is the general solution of equation (1).

dy

Example 11 Find the particular solution of the differential equation d_ =—4xy? given
X

thaty = 1, when x = 0.

Solution Ify # 0, the given differential equation can be written as

dy
7 = —4x dx .. (1)
Integrating both sides of equation (1), we get
d—z = - 4j x dx
y
1
or -—=-2+C
y
1
= . (2
or y 2% _C (2

Substituting y = 1 and x = 0 in equation (2), we get, C=-1.

Now substituting the value of C in equation (2), we get the particular solution of the

given differential equationas y = —.
2X°+1

Example 12 Find the equation of the curve passing through the point (1, 1) whose
differential equation is x dy = (2x? + 1) dx (x # 0).
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Solution The given differential equation can be expressed as

2x% 1
dy* = dx*
y X
1
or dy = (ZX +;} dx .. (1)

Integrating both sides of equation (1), we get

jdy = I(2x+%jdx

or y=x*+log|x|+C .. (2)
Equation (2) represents the family of solution curves of the given differential equation
but we are interested in finding the equation of a particular member of the family which

passes through the point (1, 1). Therefore substituting x =1, y = 1 in equation (2), we
getC =0.

Now substituting the value of C in equation (2) we get the equation of the required
curve asy = ¥ + log |x|.

Example 13 Find the equation of a curve passing through the point (-2, 3), given that

the slope of the tangent to the curve at any point (x, y) is 2—;( :
y

Solution We know that the slope of the tangent to a curve is given by ﬂ

dx
dy 2x
, —_— = = . (1
SO dX y2 ( )
Separating the variables, equation (1) can be written as
y2 dy = 2x dx .. (2)
Integrating both sides of equation (2), we get
Iyzdy = J2X dx
Yo,
or ? =x+C .. (3)

ay
* The notationa due to Leibnitz is extremely flexible and useful in many calculation and formal
transformations, where, we can deal with symbols dy and dxexactly as if they were ordinary numbers. By
treatingdx and dy like separate entities, we can give neater expressions to many calculations.
Refer: Introduction to Calculus and Analysis, volume-1 page 172, By Richard Courant,
Fritz John Spinger — Verlog New York.
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Substituting x = -2, y= 3 in equation (3), we get C = 5.

Substituting the value of C in equation (3), we get the equation of the required curve as
3 1

y?: X +5 or y=(@3x2+15)3

Example 14 In a bank, principal increases continuously at the rate of 5% per year. In
how many years Rs 1000 double itself?

Solution Let P be the principal at any time t. According to the given problem,

®_ (ij <P
dt 100
dp P
—_— = (2
o &t 20 @)
separating the variables in equation (1), we get
dp dt
P =20 . (2)
Integrating both sides of equation (2), we get
t
logP= —+C
0g 29 1
or p=e? "
L
or P=Ce® (where e =C) .. (3)
Now P =1000, whent=0

Substituting the values of P and tin (3), we get C = 1000. Therefore, equation (3),
gives
L
P =1000 e®
Let t years be the time required to double the principal. Then

L
2000 =1000e® = t=201log,2

EXERCISE 9.4/
For each of the differential equations in Exercises 1 to 10, find the general solution:
dy 1-cosx dy >
—= 2. —:\/4— —2<y<2
dx 1+4cosx dx y y<2
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d
d_ier:l(yil) 4. sec? x tany dx + sec? ytan x dy = 0
~ . dy _ 2 2
(e +e’dy—(e—e*)dx=0 6. &_(1+x)(1+y)
dy 5
log y dx —x dy=0 8. X°—==-
ylogy ax—xay X y
dy . 1 . . ) _
&—sm X 10, e*tanydx+ (1 —-¢e¥)sec’ydy=0

For each of the differential equations in Exercises 11 to 14, find a particular solution
satisfying the given condition:

11.

12.

13.

14.

15.

16.

17.

18.

19.

d
(X3+X2+X+1)d_§ =2x2+x;y =1 whenx =0
X(Xz—l);—dz=1;y:0whenx:2
dy \
cos d_ =a @e R);y=1whenx=0
X

ﬂzytanx;yz l'whenx=0

dx

Find the equation of a curve passing through the point (0, 0) and whose differential
equation is y’ = e* sin x.

dy

d—:(x+2) (y +2), find the solution curve
X

For the differential equation xy

passing through the point (1, -1).

Find the equation of a curve passing through the point (0, —2) given that at any
point (X, y) on the curve, the product of the slope of its tangent andy coordinate
of the point is equal to the x coordinate of the point.

At any point (x, y) of a curve, the slope of the tangent is twice the slope of the
line segment joining the point of contact to the point (- 4, —3). Find the equation
of the curve given that it passes through (-2, 1).

The volume of spherical balloon being inflated changes at a constant rate. If
initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of
balloon after t seconds.
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20. Inabank, principal increases continuously at the rate of r% per year. Find the
value of r if Rs 100 double itself in 10 years (log 2 = 0.6931).

21. Inabank, principal increases continuously at the rate of 5% per year. An amount
of Rs 1000 is deposited with this bank, how much will it worth after 10 years
(e%°=1.648).

22. Inaculture, the bacteria count is 1,00,000. The number is increased by 10% in 2
hours. In how many hours will the count reach 2,00,000, if the rate of growth of
bacteria is proportional to the number present?

23. The general solution of the differential equation % =e*V is
X
(A) ex+evy=C (B) ex+ev=C
C) ex+ev=C (D) ex+evy=C

9.5.2 Homogeneous differential equations
Consider the following functions inx and y

Fo (X y) =y?+2xy, F,(x,y)=2x -3y,
F,(x,y) = 005[%), F, (x,y) =sinx+ cos'y

If we replace x and y by Ax and Ay respectively in the above functions, for any nonzero
constant A, we get

Fo (WX Ay) = A2 (y2 + 2xy) = 22 F (X, Y)
F, (A Ay) = A (2x=3y) =L F,(X,Y)

F, (A, Ay) = cos(%jzcos(—ij =) F(x,y)

F, (A, Ay) =sin Ax + cos Ay # A"F, (%, y), foranyn € N

Here, we observe that the functions Fl, F2, F3 can be written in the form
F(AX, Ay) =A"F (x, y) but F, can not be written in this form. This leads to the following
definition:

A function F(x, y) is said to be homogeneous function of degree n if

F(Ax, Ay) = A" F(x, y) for any nonzero constant A.

We note that in the above examples, Fl, sz F3 are homogeneous functions of
degree 2, 1, 0 respectively but F, is not a homogeneous function.
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We also observe that

X X

” w75l
ren=s(a5 ()

” =)l
o2 o)

F,(x, y) # X"hg (%j , foranyne N

Lo (X
or F,(xy) =Y hv(yj,for anyne N

Therefore, a function F (x, y) is a homogeneous function of degreen if

F(x,y):x”g(%j or y"h(%)

A differential equation of the form y_ F (x,y) is said to be homogenous if

dx
F(x,y) is a homogenous function of degree zero.
To solve a homogeneous differential equation of the type

& (X,y)=g(yj

X

dx
We make the substitution y = V.X
Differentiating equation (2) with respect to X, we get
v = V+ xﬂ
dx dx

d
Substituting the value of d_i from equation (3) in equation (1), we get

e
. ()

. (3)
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V+ xﬂ =
dX - g (V)
(0 .
or Ix =g(v) -v .. (4)
Separating the variables in equation (4), we get
dv dx
= — .. (5)
gW)-v X
Integrating both sides of equation (5), we get
dv 1
[ = [=ax+C .. (6)
g(v)—-v X
Equation (6) gives general solution (primitive) of the differential equation (1) when

we replace v by J .
X

If the homogeneous differential equation is in the form %:F(X, y)

where, F (x, y) is homogenous function of degree zero, then we make substitution

X . . . .
— =V i.e., x =vy and we proceed further to find the general solution as discussed

above by writing g F(x,y)= h(lj
dy y

d
Example 15 Show that the differential equation (x —y) d—i =X+ 2y is homogeneous

and solve it.
Solution The given differential equation can be expressed as
dy x+2y
& = — .. (1)
X X—y
Let F(x,y) = x 2y
Xy
A(x+2
Now F o, Ay) = SN g0 4 1)

A(x=y)



400 MATHEMATICS

Therefore, F(X, y) is ahomogenous function of degree zero. So, the given differential
equation is a homogenous differential equation.

Alternatively,

dy 1+2 y

Y _|_x|_glY

o) o
X

R.H.S. of differential equation (2) is of the form g %: and so it is a homogeneous

function of degree zero. Therefore, equation (1) is a homogeneous differential equation.
To solve it we make the substitution

y = VX .. (3)
Differentiating equation (3) with respect to, X we get
dy dv
— = V+X— .. (4
dx dx @
- dy :
Substituting the value of y and ™ in equation (1) we get
dv 1+2v
V4 X — =
dx  1-v
av _ 1+2v
or X— = -V
dx 1-v
dv Vv v 1
or X— =
dx 1 v
v 1 dx
dv =
or viovo1 X
Integrating both sides of equation (5), we get
—2V ! dv = ﬂ
vioov 1 X
12v 13 Ve iC
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1
- dv — dv  log|x
or 2V v 1 2y 1 ol
or }|09|V 1 3 L ~dv  log| x|
2 2 1 2 ,\/é
Y2
1 2 3 2 1 1
=log|v® v 1] —.—=tan = —— log| x
or > log] | 57 7 ol x|
1 1 2v 1
or Zlog|v? v 1| =logx* +3tant Why?
> loo] | Slog 5 & (W
. y
Replacing v by X we get
N ‘ 1.,
Zlogls £ 1| =logx? J3tan*
or 2 g X2 X 2 g '\/_X Cl
1 y2 L2y +X
—logj| = +—= +1 +C,
or > g Z j [J_x
or log|(y? + xy+%%)|= 2\/§tan1(2y +Xj+2C
3x
or log|(x? + xy + y?)| = 2J§tan‘{x+—2yJ+C
J3x

which is the general solution of the differential equation (1)

Example 16 Show that the differential equation xcos(ljz—yz ycos(l}rx is
X/ dx X

homogeneous and solve it.

Solution The given differential equation can be written as

0 ycos(%} X

i (%) . (D)
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It is a differential equation of the form %:F (X, y) -
X

ycos (lj-i- X
— X/

Here F(X,y)=
X oos(%)

Replacing x by Ax and y by Ay, we get

ALy cos(l) +X]
F(Ax, Ay) = — -
x(xcos;j

Thus, F (x, y) is a homogeneous function of degree zero.

=1 [F(x,y)]

Therefore, the given differential equation is a homogeneous differential equation.
To solve it we make the substitution

y =VvX .. (2)
Differentiating equation (2) with respect to x, we get
dy dv
— = V+X— .. (3
dx dx @)

d
Substituting the value of y and d—i in equation (1), we get

dv  vcosv+1

V+ X— =
dx cosv
vcosv+1
or X— = —————V
dx cosv
dv 1
or X— = —
dx  oosv
dx
or cosv dv = —
X
1
Therefore jcosv dv = _[— dx
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or sinv =log |x| + log |C|
or sinv = log |Cx|

Replacing v by % , We get

inl Y
SIn| = | =
[X) log |Cx]|

which is the general solution of the differential equation (1).

X X
Example 17 Show that the differential equation 2yeydx+(y—2xey)dy=0is
homogeneous and find its particular solution, given that, x =0 wheny = 1.

Solution The given differential equation can be written as

X

dx a2 2xe;—y

% .. (1)
2y e’
_ 2xe7 -y
Let Fxy) = ———
2er
A 2xe7 - y}
Then F O, Ay) = ——===2°[F(x,Y)]
X(Zyey}

Thus, F(x, y) is a homogeneous function of degree zero. Therefore, the given
differential equation is a homogeneous differential equation.

To solve it, we make the substitution

X=Vvy - (2)
Differentiating equation (2) with respect to y, we get
dx dv
—_ = V+ y_
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Substituting the value of x and % in equation (1), we get
y

s dv  2ve'-1
Ty T 2
dv 2 e"—l_v
or ydy = o
yﬂ S
or dy ~— 2¢'
or 2evdv = —dy
y
dy
or 2e’-dv = —| —
fae'-ay = -2
or 2e'=—log|y+C
X
and replacing v by ; , We get
2¢” +log|y[=C . 3

Substituting x = 0 andy = 1 in equation (3), we get
2e’+log|l|=C=>C=2
Substituting the value of C in equation (3), we get
L
2eY +logly|=2
which is the particular solution of the given differential equation.

Example 18 Show that the family of curves for which the slope of the tangent at any

. - X2 + 2 .
point (x,y) on it is Y_ isgivenby ¥ —y2=cx
2Xxy
: : dy
Solution We know that the slope of the tangent at any point on a curve is &

2 2
Therefore, ﬂ = Xy
ax 2Xxy
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N

1+

><N|~<

or 2y . (D)

X

Y
dx

Clearly, (1) is a homogenous differential equation. To solve it we make substitution

y = VX
Differentiating y = vx with respect to x, we get
ﬂ = V+ Xﬂ
dx dx
dv  1+v?
or V+X— =
dx 2V
dv 1-v?
or X—=
ax 2v
d
2V2 dv = =
1-v X
dx
or 22\/ dv =
ve=1 X
2v 1
Therefore '[VZ _1dv = —I;dx
or log|v>—1|=-log|x|+log |C |
or log [(v2-1) (x)|=1log|C||
or (V-1 x=%C,

Replacing v by % , We get

2
y _
(7—JX-1C1

or (> =x?) =+ C xorx* - y>=Cx
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EXERCISE 9.5

In each of the Exercises 1 to 10, show that the given differential equation is homogeneous
and solve each of them.

. X+Yy
1. (¢ +xy)dy = (x* +y?) dx 2. sz
3. (X=y)dy-(x+y)dx=0 4. (x2-y))dx +2xydy =0
5. x2%=x2—2y2+xy 6. xdy-ydx=x*+y?dx
7. {xcos(1j+ ysin (lj} y dx ={ysin(lj— xcos(l)}x dy
X X X X
8. xﬂ—y+xsin(l]=0 9. ydx+x|og(l)dy—2xdy:0
dx X X

0 1e7dxe71§dyo

For each of the differential equations in Exercises from 11 to 15, find the particular
solution satisfying the given condition:

11, (x+y)dy+ (x-y)dx=0; y=1whenx=1
12, x*dy + (xy +y?)dx =0;y=1when x=1

13. XSinz% y dx xdy 0Oy thenle
d
14. —y—l-i-COSGC(lj:O; y:OWhenx:_’]_
dx X X
2 2 dy
15,7 2xXy+ y° —2x &=o; y=2whenx=1

dx X
16. A homogeneous differential equation of the from d_y =h [;J can be solved by

making the substitution.
(A) y=vx (B) v=yx (C) x=wvy (D) x=v



DIFFERENTIAL EQUATIONS 407

17. Which of the following is a homogeneous differential equation?
(A) 4x+6y+5)dy —(By+2x+4)dx=0
(B) (xy) dx - (x*+y)dy=0
C) C+2y)dx +2xydy =0
(D) y?dx + (x* —xy —y?) dy = 0
9.5.3 Linear differential equations
A differential equation of the from

dy
—+ Py =
dx y=Q

where, P and Q are constants or functions of x only, is known as a first order linear
differential equation. Some examples of the first order linear differential equation are

dy
_+ - H
o Y =sinx

@ (v )1
dx | xlogx ) x

Another form of first order linear differential equation is

dx
EJF Px=0Q,

where, P, and Q, are constants or functions of y only. Some examples of this type of
differential equation are

d
—+X=CosYy

To solve the first order linear differential equation of the type

dy o,

Multiply both sides of the equation by a function of x say g (x) to get

900 2 +P.(00) y=0.900) e
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Choose g (x) in such a way that R.H.S. becomes a derivative of y. g (X).

d d
e, 900 o +P.9(MY = — [y.0 (]
d d
or 900 = +P.9XY =900 & +Y g X)
= P.g(x) =g’ (x)
or = 9
9()

Integrating both sides with respect to x, we get
9'(x)
Pdx = |——=dx
I I a(x)
or IP-dx =log (g (x))
or g(x) = oJPe

On multiplying the equation (1) by g(x) = eIP y , the L.H.S. becomes the derivative

of some function of x and y. This function g(x) = ejP * s called Integrating Factor
(I.F.) of the given differential equation.

Substituting the value of g (x) in equation (2), we get

edey Pepdxy:Qede
dx
d P d P o
or — Ve =
o y Qe

Integrating both sides with respect to x, we get

Pdx _— Pdx

y e = Qe dx

Pdx Pdx
d

or y=-¢e Qe x C

which is the general solution of the differential equation.
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Steps involved to solve first order linear differential equation:

(i) Write the given differential equation in the form %+ Py =Q where P, Q are
constants or functions of x only.
(i) Find the Integrating Factor (I.F) = ¢ °%.
(i) Write the solution of the given differential equation as

y(LF)= QxILF dx C

dx
In case, the first order linear differential equation is in the form d_y+ Px=Qq,

where, P, and Q, are constants or functions of y only. Then L.F = ¢ A9 and the
solution of the differential equation is given by

x. (LF) = [(Q,x IF)dy+C

Example 19 Find the general solution of the differential equation ﬂ_y = COSX-
ax

Solution Given differential equation is of the form

d
d—i +Py=Q,whereP=-1and Q = cos X
1k X
Therefore I.F=¢ €
Multiplying both sides of equation by I.F, we get
d
e‘x—y—e‘xy = eXCOosX
dx
dy —X —X
or —(ye)=e*cosx
dx ( Y )
On integrating both sides with respect to x, we get
ye * = Je‘xcosxdx+C .. (1)
Let | = Ie‘x cos x dx

= cosx(e;j— I(—sin X) (™) dx
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—cosxe ™ —Isin xe X dx

—cosxe —[sinx(—e_x) —_[cosx (- dx}

—cosxe *+sinx e —fcosx e X dx

or =—e*cosXx+sinxex—|
or 2l = (sin x — cos x) e
| = (sinx—cosx)e”
2
Substituting the value of I in equation (1), we get

yerx = (sm x;cosx)e_X ic

or

or y = (smx;cosx)JrCeX

which is the general solution of the given differential equation.

d
Example 20 Find the general solution of the differential equation X d_i +2y=x* (x£0) .

Solution The given differential equation is

dy

X—+2y = x2 . @1

opas P 1)
Dividing both sides of equation (1) by x, we get

dy 2

—_ - =

dx xy X

A : : : dy 2
which is a linear differential equation of the type o Py =Q, where P= 2 andQ=x.

So ILF = effdxzeng= e'9X" = x? [as 9" ¥ = £ (x)]
Therefore, solution of the given equation is given by
y.x2=[() (¢)dx+C = [x’dx+C

2
or y:XTjLCx’2

which is the general solution of the given differential equation.
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Example 21 Find the general solution of the differential equation y dx — (x + 2y?) dy =0.
Solution The given differential equation can be written as
ax X

—_—— =2
dy y y

1
This is a linear differential equation of the type %4— Px=Q,,where P, :—y and
y

Jli dy a1
Q, = 2y. Therefore LF=g" ¥ =e08¥ —glosm)" ——_
y

Hence, the solution of the given differential equation'is

x2 = j(2y)(ijdy+c
y y

or 2= ey +C
%
X 2y +C
or T =4yt
y y
or X =2y + Cy

which is a general solution of the given differential equation.

Example 22 Find the particular solution of the differential equation

ﬂ+ ycot x = 2x+ x2cot x (x = 0)
X
. T
given thaty = 0 when x=§.

d
Solution The given equation is a linear differential equation of the type d—z+ Py=0Q,

where P = cot x and Q = 2x + x? cot x. Therefore

cot x dx bog sin x

ILF=¢e e sinx

Hence, the solution of the differential equation is given by
y.sinx=/(2x +x2cot x) sin x dx + C
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or y sin x =] 2x sin x dx + [x2 cos x dx + C
2 2
or y sin x = sin x(zij—.[cos x(zijdx+.fx2 cos xdx+C
2 2
or ysinx = xzsinx—.[xzcosxdx+szcosxdx+c
or ysinx=x2sinx+ C . (1)

T
Substitutingy =0 and X = 2 in equation (1), we get

o<1 wl3)-c

2
or C:i
4

Substituting the value of C in equation (1), we get

2
. - T
ysinx = XZSIn X—T

2
T

or y= x*— (sinx =0)
X

which is the particular solution of the given differential equation.

Example 23 Find the equation of a curve passing through the point (0, 1). If the slope
of the tangent to the curve at any point (X, y) is equal to the sum of the x coordinate
(abscissa) and the product of the x coordinate and y coordinate (ordinate) of that point.

Solution We know that the slope of the tangent to the curve is &

dy _
Therefore, ol X + Xy
dy
— Xy = -1
or ot At 1

d
This is a linear differential equation of the type d—i+ Py =Q,where P=—xand Q =x.

Therefore, I.F=¢ """ =e
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Hence, the solution of equation is given by

y-eé = I(X)(e_TXZ)dX—i—C .. (2)

Let I = I(x)e_de

2
—X
Let T=t,then—xdx:dtorx dx = — dt.

_X2

Therefore, = —Ietdt - el=—p?
Substituting the value of I in equation (2), we get
- X
Ye 2 - eT+ C
i
or y=-1+Ce? - (3)

Now (3) represents the equation of family of curves. But we are interested in
finding a particular member of the family passing through (0, 1). Substituting x=0 and
y =1 in equation (3) we get

=-1+C.€% or C=2
Substituting the value of C in equation (3), we get

y=-1+2e?
which is the equation of the required curve.
EXERCISE 9.6
For each of the differential equations given in Exercises 1 to 12, find the general solution:
Al ﬂ+2y=sinx 2. ﬂ+3y=e’2X 3. Y, Y
dx dx dx x
dy T , dy I
4, —+(secx)y=tanx|0<x<— 5. Cos“X—+y=tanx |0<x<—
dx 2 dx 2
6. xﬂ+2y=leogx 7. xlogxﬂ+ yzzlogx
dx dx X

8. (L+x%dy + 2xy dx = cot x dx (x # 0)
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9. xﬂ+y—x+xycotx:0(x¢0) 10. (x+y)ﬂ=1
dx dx
d
11, ydx+ (x—1) dy=0 12, (c3y) L=y (y>0).

For each of the differential equations given in Exercises 13 to 15, find a particular
solution satisfying the given condition:

13. ﬂ+ 2ytan x=sinx; y=0 when x=%

14 @+ x2)%+2xy=rlxz; y=0 when x =1

15. ﬂ—3ycotx=sin2x; y =2 when X =—
dx 2

16. Findthe equation of a curve passing through the origin given that the slope of the
tangent to the curve at any point (x, y) isequal to the sum of the coordinates of
the point.

17. Findthe equation of a curve passing through the point (0, 2) given that the sum of
the coordinates of any point on the curve exceeds the magnitude of the slope of
the tangent to the curve at that point by 5.

d
18. The Integrating Factor of the differential equation Xd_z_ y=2x* s
1
(A) e™ (B) e~ ©) 3 (D) x
19. The Integrating Factor of the differential equation
(1—y2)%+yx =ay(1ly Dis
dy
1 1 1

1
A7 ® g OTg O Jr

Miscellaneous Examples

Example 24 Verify that the function y = ¢, e cos bx + ¢, e sin bx, where c , ¢, are
arbitrary constants is a solution of the differential equation

d’y _ dy
—2 _2a2+(a2+b?)y=0
o i y
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Solution The given function is

y =e*[c, cosbx + c, sinbx] .. (1)
Differentiating both sides of equation (1) with respect to x, we get
Y _ bc,sinbx b b b inbx e
v e™ —bc;sinbx bc,cosbx ¢ cosbx c,sinbx e® a
or Y e b b bc, )sinb (2)
ol e*’[(bc, +ac;)cosbx + (ac, —bc,)sinbx]

Differentiating both sides of equation (2) with respect to x, we get
d*y _ .
v e”[(bc, ac;)( bsinbx) (ac, bc,) (bcosbx)]

+ [(bc, +ac,) cosbx+(ac, —be;)sinbx]e™. a
= e¥[(a’c, —2abc; — b®c,) sinbx + (a’ ¢, +2abc, — b?c;) cosbx]
- d*y . N\ . .
Substituting the values of ?& andy in the given differential equation, we get
L.H.S. =e*[a’c, —2abc, —b?c,)sinbx+ (a’c, + 2abc, —b?c; )cosbx]
2ae™ [(bc, ac,)cosbx (ac, bc;)sinbx]

(@®> b%e®[c,cosbx c,sinbx]

.. (a%c, - 2abe, ~b?c, —2a%c, +2abc, +a’c, +b202)sin bx

+ (a®c, + 2albc, —b®c, —2abc, —2a’c, + a’c, + b°c, ) cosbx

= e¥”[0xsinbx+0cosbx] = € x0=0 =R.H.S.
Hence, the given function is a solution of the given differential equation.
Example 25 Form the differential equation of the family of circles in the second
guadrant and touching the coordinate axes.

Solution Let C denote the family of circles in the second quadrant and touching the
coordinate axes. Let (-a, a) be the coordinate of the centre of any member of

this family (see Fig 9.6).



416 MATHEMATICS

Equation representing the family C is

(x+a)P+(y-a?=a’ (D) X
or X2+y2+ 2ax —2ay +a2=0 .. (2
Differentiating equation (2) with respect to x, we get (-a, a)

2X + 2yﬂ+ 2a—2aﬂ =0 X' o >X
dx dx
dy (dy j
X+y— =-a|—-1
or de dx v
! Y’
or g VY Fig 9.6
y'-1

Substituting the value of a in equation (1), we get

172 12 12
[X+X+yy} +[y_><+yy} {Hyy}
y' -1 y' =1 y' -1

or Xy = x+ X+ yYP+[yy -y-x=yyP=[x+yy?P
or X+yPy?+ +ylP=[x+yy]
or x+ 2y +1] =[x +yy7l

which is the differential equation representing the given family of circles.

Example 26 Find the particular solution of the differential equation log (Z—y) =3x+4y
X

given thaty = 0 when x = 0.

Solution The given differential equation can be written as

or — =¥, eV .. (1)
Separating the variables, we get

dy
eTy—e3 dx

Therefore je"‘ydy = IeSde
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e_4y e3X C
o 4 T3
or 4e>*+3e%+12C=0 .. (2)

Substitutingx =0and y =0 in (2), we get

4+3+12C=00rC= —
12

Substituting the value of C in equation (2), we get
4e¥ + 3¢ -7=0,
which is a particular solution of the given differential equation.

Example 27 Solve the differential equation

(xdy —y dx) y sin [%j =(y dx + x dy) x cos (%)

Solution The given differential equation can be written as

(2 ¢l (27 o

y 2 qin| ¥
Xycos| < [+ y“sin| £
dy _ / (x) / (xj
o xysin(l)—x2 cos(xj
X X
Dividing numerator and denominator on RHS by x?, we get
2
y y Y lainlY
ﬂ _ ;COS (;) +(7j Sin (;)
e lsin(l) - cos(lj
X X X

d
Clearly, equation (1) is a homogeneous differential equation of the form d_i/ =g (%j .

or

e

To solve it, we make the substitution
y = VX .. (2
dy dv

or — = 4+ X—
dx dx
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dv _ veosv+Vvisinv o yand (2
or VX T iy ooy (using (1) and (2))

dv 2V cosv
or X— = —m88 ™
dx vsinv—cosv
(vsinv—cosvj 2 dx
or dv =
VCOSV X
VSin v —cosvV 1
Therefore I(—jdv - Zj—dx
VCOoSV X
1 1
or J'tanv dv—_[;dv = 2j;dx
or loglsecvl-log |v| = 2log| x|+log|C, |
log secv N XC
or V2| = leglCi
secv i 3
or = -+
o "G ®)

Replacing v by % in equation (3), we get

e

or sec(lj =Cxy
X

which is the general solution of the given differential equation.

= C where, C=%C,

Example 28 Solve the differential equation
(tanly —X) dy = (1 +y?) dx.

Solution The given differential equation can be written as

dx X tan'y
— 5 = 5
dy 1+vy 1+y

- (D)
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Now (1) is a linear differential equation of the form %Jr P X=Q,

1 tan 'y
where, P, = and =
o1+ y2 Q 1+ y2
Theref LF= Jor®
ererore, F= g 1+y :etan y

Thus, the solution of the given differential equation is

tany -y
xelan 'y = I [WJ e™ Ydy+C . (2)

tan ! -1
Let | = J.[fi—yzl] etan ydy

1
Substituting tan™ y =t so that (1+ ¥ jdy =dt, we get

| = Jtetdt=tet—J1.etdt:te‘—et:et(t—l)

or | = gy (tanty —1)
Substituting the value of | in equation (2), we get

x.e® Y =" (tan "ty —1)+ C

or X = (tany-1)+Ce

which is the general solution of the given differential equation.

Miscellaneous Exercise on Chapter 9

1. For each of the differential equations given below, indicate its order and degree

(if defined).
. d?y (dyj2 N (dy)3 (dyj2 .
—+5x| — | —6y=Ilogx — | =4 — | +7y = sinXx
@ dx? dx y=109 (i) dx dx y

_odfy o f(d
w GonlgH o



420

2.

10.
11.

MATHEMATICS

For each of the exercises given below, verify that the given function (implicit or
explicit) is a solution of the corresponding differential equation.

. d’y . dy 2
=aex X+ X2 X5 +2——-Xy+x"-2=0
(i) y=aex+bex+x e I y
d’y dy
i) y=¢ i - ——-2—+2y=0
(i) y=e*(acosx +bsinx) v o y
d?y
(i) y =xsin 3x ; F+9y—6cos3x=0
d
(iv) x2=2y?logy L (X4 yz)d—i—Xy=0

Form the differential equation representing the family of curves given by
(x —a)? + 2y? = a% where a is an arbitrary constant.

Prove that x2 —y2 = ¢ (@ +y2)2is the general solution of differential equation
(x® = 3x y?) dx = (y® — 3x?y) dy, where ¢ is a parameter.
Form the differential equation of the family of circles in the first quadrant which
touch the coordinate axes.

1-y?

d
Find the general solution of the differential equation d—i+ 12 =0

d 2ry+1
Show that the general solution of the differential equation A +yz_y =0is
dx x“+x+1

given by (X +y+ 1) = A (1 -x -y — 2xy), whereA is parameter.

Find the equation of the curve passing through the point (O, %) whose differential

equation is sin x cos y dx + cos x siny dy = Q.
Find the particular solution of the differential equation
(1 +e*) dy + (1 +y?) e dx =0, given thaty = 1 when x = 0.

Solve the differential equation y eVdx= (x e’ + y? )dy (y=0).

Find a particular solution of the differential equation (x—y) (dx + dy) = dx —dy,
given thaty = -1, when x = 0. (Hint: putx -y =t)
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13.

14.

15.

16.

17.

18.
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cd -i}—zux £0).
Ix o Nx ]y

Solve the differential equation {

d
Find a particular solution of the differential equation d—§+ yCOt X = 4x cosec X

T
(x # 0), given thaty = 0 when Xzz-

Find a particular solution of the differential equation (x + 1) d—i =2e7-1, given

that y= 0 when x = 0.

The population of a village increases continuously at the rate proportional to the
number of its inhabitants present at any time. If the population of the village was
20, 000 in 1999 and 25000 in the year 2004, what will be the population of the
village in 2009?

The general solution of the differential equation yax= xdy =0 is
y

(A) xy=C (B) x=Cy2 (C) y==Cx (D) y=Cx?
The general solution of a differential equation of the type 3—;+ PX=Q is
(A) yefp1dy=.|'(QleIP1dy)dy+C

®) yeel* —[(Qel™*) s c

©) xel”¥ :I(Qlejpldy)derC

(D) xefpldx=j(Q1efP1"x)dx+c

The general solution of the differential equation e* dy + (y e+ 2x) dx =0 is
(A) xer+x2=C (B) xer+y?=C

C) yee+x2=C (D) yer+x2=C
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Summary
An equation involving derivatives of the dependent variable with respect to
independent variable (variables) is known as a differential equation.

Order of a differential equation is the order of the highest order derivative
occurring in the differential equation.

Degree of a differential equation is defined if it is a polynomial equation in its
derivatives.

Degree (when defined) of a differential equation is the highest power (positive
integer only) of the highest order derivative in it.

A function which satisfies the given differential equation is called its solution.
The solution which contains as many arbitrary constants as the order of the
differential equation is called a general solution and the solution free from
arbitrary constants is called particular solution.

To form a differential equation from a given function we differentiate the
function successively as many times as the number of arbitrary constants in
the given function and then eliminate the arbitrary constants.

Variable separable method is used to solve such an equation in which variables
can be separated completely i.e. terms containing y should remain with dy
and terms containing x should remain with dx.

A differential equation which can be expressed in the form

&y f(x,y) or :—;(/ g (x,y) where, f (x, y) and g(x, y) are homogenous

functions of degree zero is called a homogeneous differential equation.

A differential equation of the form % +Py Q,where Pand Qare constants
X

or functions ofx only is called a first order linear differential equation.

Historical Note

One of the principal languages of Science is that of differential equations.

Interestingly, the date of birth of differential equations is taken to be November,
11,1675, when Gottfried Wilthelm Freiherr Leibnitz (1646 - 1716) first put in black

and white the identity jy dy = % y? , thereby introducing both the symbols J and dy.
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Leibnitz was actually interested in the problem of finding a curve whose tangents
were prescribed. This led him to discover the ‘method of separation of variables’
1691. A year later he formulated the ‘method of solving the homogeneous
differential equations of the first order’. He went further in a very short time
to the discovery of the ‘method of solving a linear differential equation of the
first-order’. How surprising is it that all these methods came from a single man
and that too within 25 years of the birth of differential equations!

In the old days, what we now call the ‘solution’ of a differential equation,
was used to be referred to as ‘integral’ of the differential equation, the word
being coined by James Bernoulli (1654 - 1705) in 1690. The word ‘solution was
first used by Joseph Louis Lagrange (1736 - 1813) in 1774, which was almost
hundred years since the birth of differential equations. It was Jules Henri Poincare
(1854 - 1912) who strongly advocated the use of the word “solution’ and thus the
word ‘solution” has found its deserved place in modern terminology. The name of
the ‘method of separation of variables’ is due to John Bernoulli (1667 - 1748),
a younger brother of James Bernoulli.

Application to geometric problems were also considered. It was again John
Bernoulli who first brought into light the intricate nature of differential equations.
In a letter to Leibnitz, dated May 20, 1715, he revealed the solutions of the
differential equation

Xty” =2y,

which led to three types of curves, viz., parabolas, hyperbolas and a class of
cubic curves. This shows how varied the solutions of such innocent looking
differential equation can be. From the second half of the twentieth century attention
has been drawn to the investigation of this complicated nature of the solutions of
differential equations, under the heading ‘qualitative analysis of differential
equations’. Now-a-days, this has acquired prime importance being absolutely
necessary in almost all investigations.

4

> ——

o,



Chapter 10
(VECTOR ALGEBRA)

+¢* In most sciences one generation tears down what another has built and what
one has established another undoes. In Mathematics alone each generation

builds a new story to the old structure. - HERMAN HANKEL ¢

10.1 Introduction

In our day to day life, we come across many queries such itk
as — What is your height? How should a football player hit
the ball to give a pass to another player of his team? Observe
that a possible answer to the first query may be 1.6 meters,
a quantity that involves only one value (magnitude) which
is a real number. Such quantities are called scalars.
However, an answer to the second query is a quantity (calied
force) which involves muscular strength (magnitude) and
direction (in which another player is positioned). Such
quantities are called vectors. In mathematics, physics and
engineering, we frequently come across with both types of
guantities, namely, scalar quantities such as length, mass,
time, distance, speed, area, volume, temperature, work,
money, voltage, density, resistance etc. and vector quantities like displacement, velocity,
acceleration, force, weight, momentum, electric field intensity etc.

W.R. Hamilton
(1805-1865)

In this chapter, we will study some of the basic concepts about vectors, various
operations on vectors, and their algebraic and geometric properties. These two type of
properties, when considered together give a full realisation to the concept of vectors,
and lead to their vital applicability in various areas as mentioned above.

10.2 Some Basic Concepts

Let ‘I’ be any straight line in plane or three dimensional space. This line can be given
two directions by means of arrowheads. A line with one of these directions prescribed
is called a directed line (Fig 10.1 (i), (ii)).
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> Y

(1)) (i) (iiii)
Fig 10.1

Now observe that if we restrict the line | to the line segment AB, then a magnitude
is prescribed on the line | with one of the two directions, so that we obtain a directed
line segment (Fig 10.1(iii)). Thus, a directed line segment has magnitude as well as
direction.

Definition 1 A quantity that has magnitude as well as direction is called a vector.
Notice that a directed line segment is a vector (Fig 10.1(iii)), denoted as AB or
simply as a, and read as ‘vector AB’ or ‘vector g ’.
The point A from where the vector AB starts is called its initial point, and the

point B where it ends is called its terminal point. The distance between initial and
terminal points of a vector is called the magnitude (or length) of the vector, denoted as

| AB|, or |a|, or a. The arrow indicates the direction of the vector.

Since the length is never negative, the notation | a | < 0 has no meaning.

Position Vector
From Class XI, recall the three dimensional right handed rectangular coordinate

system (Fig 10.2(i)). Consider a point P in space, having coordinates (X, y, z) with

respect to the origin O (0, 0, 0). Then, the vector OP having O and P as its initial and
terminal points, respectively, is called the position vector of the point P with respect

to O. Using distance formula (from Class XI), the magnitude of Op (or r ) is given by

|OP| = /X% +y2 + 2
In practice, the position vectors of points A, B, C, etc., with respect to the origin O
are denoted by a, b, ¢, etc., respectively (Fig 10.2 (ii)).
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Z Z
A B
P(x,0,2) 7 B
> 2 7rC
r
0(0,0,0) Y (0] Y
X @) X (ii)
Fig 10.2

Direction Cosines

Consider the position vector OP orr ofapointP(x,Y, z) asin Fig 10.3. The angles o,

B, ymade by the vector r with the positive directions of x, y and z-axes respectively,
are called its direction angles. The cosine values of these angles, i.e., cosa, cos 3 and
cosy are called direction cosines of the vector r , and usually denoted by I, m and n,

respectively. Z

AN >N
S NS >
18 ) /2 R - A P(p2)
' . ot :
. o) . Jy
Cox ,"’
AL
X
Fig 10.3 X

From Fig 10.3, one may note that the triangle OAP is right angled, and in it, we
have coso = X (r stands for |r |) . Similarly, from the right angled triangles OBP and
r

OCP, we may write cos = Y and cosy = z . Thus, the coordinates of the point P may

r r . o
also be expressed as (Ir, mr,nr). The numbers Ir, mr and nr, proportional to the direction
cosines are called as direction ratios of vector r , and denoted asa, b and c, respectively.
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One may note that 12+ m2 + n2 = 1 but @ + b? +c2# 1, in general.

10.3 Types of \Vectors

Zero Vector A vector whose initial and terminal points coincide, is called a zero
vector (or null vector), and denoted as 0. Zero vector can not be assigned a definite
direction as it has zero magnitude. Or, alternatively otherwise, it may be regarded as
having any direction. The vectors AA, BB represent the zero vector,

Unit Vector A vector whose magnitude is unity (i.e., 1 unit) is called a unit vector. The
unit vector in the direction of a given vector a is denoted by &.

Coinitial Vectors Two or more vectors having the same initial point are called coinitial
vectors.

Collinear Vectors Two or more vectors are said to be collinear if they are parallel to
the same line, irrespective of their magnitudes and directions.

Equal Vectors Two vectors a and b are said to beequal, if they have the same
magnitude and direction regardiess of the positions of their initial points, and written
as a=bh.

Negative of a Vector A vector whose magnitude is the same as that of a given vector
(say, AB), but direction is opposite to that of it, is called negative of the given vector.
For example, vector BA is negative of the vector AB, and written as BA =— AB .
Remark The vectors defined above are such that any of them may be subject to its
parallel displacement without changing its magnitude and direction. Such vectors are
called free vectors. Throughout this chapter, we will be dealing with free vectors only.

Example 1 Represent graphically a displacement 1

of 40 km, 30° west of south. W< >E

Solution The vector Qp represents the required Scale

displacement (Fig 10.4). 'IOTn| 309

Example 2 Classify the following measures as
scalars and vectors.
(i) 5 seconds

(i) 1000 cm? P S
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(i) 10 Newton (iv) 30 km/hr (v) 10 g/cm?
(vi) 20 m/s towards north
Solution
(i) Time-scalar (i) Volume-scalar (i) Force-vector
(iv) Speed-scalar (v) Density-scalar (vi) Velocity-vector

Example 3 In Fig 10.5, which of the vectors are:

(i) Collinear (ii) Equal (iii) Coinitial
Solution
(i) Collinearvectors: a, ¢ and d .
Scale
(ii) Equal vectors: a and c. *—*1 —

(iii) Coinitial vectors: b, ¢ and d.

Fig 10.5

| EXERCISE 10.1]

Represent graphically a displacement of 40 km, 30° east of north.
2. Classify the following measures as scalars and vectors.

() 10kg (i) 2 meters north-west (i) 40°
(iv) 40 watt (v) 107* coulomb (vi) 20 m/s?
3. Classify the following as scalar and vector quantities.
(i) time period (1) distance (iii) force
(iv) velocity (v) work done i
4. InFig10.6 (asquare), identify the following vectors.
(i) ‘Coinitial (i) Equal
(iii) Collinear but not equal 7
5. Answer the following as true or false.
(i) a and —a are collinear.
(ii) Two collinear vectors are always equal in z
magnitude. Fig 10.6

(iii) Two vectors having same magnitude are collinear.
(iv) Two collinear vectors having the same magnitude are equal.

=y



VECTOR ALGEBRA 429

10.4 Addition of \ectors C

A vector AB simply means the displacement from a
point A to the point B. Now consider a situation that a
girl moves from A to B and then from B to C
(Fig 10.7). The net displacement made by the girl from X

point A to the point C, is given by the vector AC and Fig 10.7
expressed as

AC = AB+BC
This is known as the triangle law of vector addition.

In general, if we have two vectors a and b (Fig 10.8 (i)), then to add them, they
are positioned so that the initial point of one coincides with the terminal point of the
other (Fig 10.8(ii)).

C
? %
3 ‘.
¥ B it
x 2
> A > B A >B
a a
~N
(74 - é\_\
@) (ii) (iii)

Fig 10.8

For example, in Fig 10.8 (ii), we have shifted vector b without changing its magnitude
and direction, so that it’s initial point coincides with the terminal point of a. Then, the

vector a+ b, represented by the third side AC of the triangle ABC, gives us the sum
(or resultant) of the vectors a and bi.e., in triangle ABC (Fig 10.8 (ii)), we have
AB+BC = AC
Now again, since AC= - CA, from the above equation, we have
AB+BC+CA = AA=0

This means that when the sides of a triangle are taken in order, it leads to zero
resultant as the initial and terminal points get coincided (Fig 10.8(iii)).
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Now, construct a vector BC' so that its magnitude is same as the vector BC, but
the direction opposite to that of it (Fig 10.8 (iii)), i.e.,

BC' = -BC
Then, on applying triangle law from the Fig 10.8 (iii), we have

AC =AB+BC = AB+(-BC) =a-b

The vector AC’ is said to represent the difference of a and b .

Now, consider a boat in a river going from one bank of the river to the otherin a
direction perpendicular to the flow of the river. Then, it is acted upon by two velocity
vectors—one is the velocity imparted to the boat by its engine and other one is the
velocity of the flow of river water. Under the simultaneous influence of these two
velocities, the boat in actual starts travelling with a different velocity. To have a precise
idea about the effective speed and direction
(i.e., the resultant velocity) of the boat, we have
the following law of vector addition.

If we have two vectors a and b represented

by the two adjacent sides of a parallelogram'in
magnitude and direction (Fig 10.9), then their

sum a+b is represented in magnitude and

direction by the diagonal of the parallelogram
through their common point. This'is known as
the parallelogram law of vector addition.

From Fig 10.9, using the triangle law, one may note that
OA+AC = OC
or OA+0OB = OC (since AC=0B)

which is parallelogram law. Thus, we may say that the two laws of vector
addition are equivalent to each other.

a
Fig 10.9

Properties of vector addition
Property 1 For any two vectors a and b ,

a+b =b+a (Commutative property)
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Proof Consider the parallelogram ABCD b re

(Fig 10.10). Let AB  aand BC b, then using
the triangle law, from triangle ABC, we have

-
AC = a+b > ERy
Now, since the opposite sides of a A
parallelogram are equal and parallel, from )
Fig10.10, we have, AD=BC=b and [~ -~
DC =AB =a . Again using triangle law, from Fig ‘1'0.10
triangle ADC, we have
AC = AD+DC=b+a
Hence a+b =b+a
Property 2 For any three vectors a, bandc
(a+b)+c = a+(b+c) (Associative property)

Proof Let the vectors a,b and c be represented by PQ, QR and RS, respectively,
as shown in Fig 10.11(i) and (ii).

Fig 10.11
Then a+b = PQ+QR=PR
and b+c = QR+RS=QS

So (a+b)+ c =PR+RS=PS
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and a+(b+c) = PQ+QS=PS

Hence (a+b)+c = a+(b+c)

Remark The associative property of vector addition enables us to write the sum of
three vectors a ,b, ¢ as a+b +c without using brackets.
Note that for any vector g, we have
a+0=0+a=a
Here, the zero vector (Q is called the additive identity for the vector addition.
10.5 Multiplication of aVector by a Scalar

Let a be agiven vector and A a scalar. Then the product of the vector a by the scalar
A, denoted as A a, is called the multiplication of vector a by the scalar A. Note that,

A a is also a vector, collinear to the vector a. The vector A a has the direction same
(or opposite) to that of vector a according as the value of A is positive (or negative).
Also, the magnitude of vector A a is |A | times the magnitude of the vector a, i.e.,
[hal =|r|lal
A geometric visualisation of multiplication of a vector by a scalar is given
inFig 10.12.

: g :
77/ A N
7y T~ \/

Fig 10.12
When A = -1, then Ja=—a, which is a vector having magnitude equal to the

2}\

magnitude of @ and direction opposite to that of the direction of a. The vector-a is
called the negative (or additive inverse) of vector a and we always have

a+(-a) = a)+a=0

Also, if kzli, provided a 0, i.e. a isnotanull vector, then
a

1
|7u’:1|=|7vllal=m""‘| 1
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So, Aa represents the unit vector in the direction of a. We write it as
1
EY

a =

For any scalar k, k0 =0.

10.5.1 Components of a vector

Let us take the points A(1, 0, 0), B(0, 1, 0) and C(0, 0, 1) on the x-axis, y-axis and
z-axis, respectively. Then, clearly

a

|OA|=1,|0B| = 1and |[OC|=1

The vectors OA, OB and OC, each having magnitude 1,
are called unit vectors along the axes OX, OY and OZ,

respectively, and denoted by {,] and k, respectively >
(Fig 10.13). Fig 10.13

Now, consider the position vector OP of a point P (x, y, z) as in Fig 10.14. Let P,
be the foot of the perpendicular from P on the plane XOY. We, thus, see that P P is

Z

N

P (x,,7)

X Fig 10.14
parallel to z-axis. As 1, jandlz are the unit vectors along the x, y and z-axes,
respectively, and by the definition of the coordinates of P, we have PP =0OR = zk .

Similarly, QP, =0S =yj and OQ=xi .
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Therefore, it follows that OP, = OQ+QP, =x +Y]

and OP = OP, +PP =xi + yj + zk
Hence, the position vector of P with reference to O is given by
OP(orr) = xi +yj+zk
This form of any vector is called its component form. Here, X, y and z are called

as the scalar components of r ,and xi, yj and zk are called the vector components

of r along the respective axes. Sometimes x, y and z are also termed as rectangular
components.

The length of any vector r =xi + yj + K, is readily determined by applying the
Pythagoras theorem twice. We note that in the right angle triangle OQP, (Fig 10.14)

|OP, | = 4/ |0Q P+|QPF = /¥ +y?,

and in the right angle triangle OP_P, we have

OP = y|OP, P [RPF (¢ y) 27
Hence, the length of any vector r = xi + yj+zk is given by
[r|= |xi+y1°+zl2|=\/m
If aand b are any two vectors given in the component form a1f+ a21°+ aSIZ and
bi +b, j+b.k , respectively, then
(i) the sum (or resultant) of the vectors a and b is given by
a+b = (& +b)i+(a, +b) ] + (g, +by)k
(i) - the difference of the vector a and b is given by
a—b= (a —b)i+(a,—b,)j+(a;—by)k

(i) the vectors a and b are equal if and only if
a,=b,a=b, and a,=b,
(iv) the multiplication of vector a by any scalar A is given by

= (a) (a,)] (a)k
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The addition of vectors and the multiplication of a vector by a scalar together give

the following distributive laws:

Let a and b be any two vectors, and k and m be any scalars. Then

() ka+ma=(k+m)a
(i) k(ma)=(km)a
(i) k(a b) ka kb
Remarks
(i) One may observe that whatever be the value of A, the vector Aa is always
collinear to the vector a. In fact, two vectors @ and b are collinear if and only
if there exists a nonzero scalar A such that b =2a . If the vectors a.and b are
given in the component form, i.e. @=ai +a, ] +ak and b=bi +b,] +byk,
then the two vectors are collinear if and only if
bi +b, 4 bk = Mai +a,] +a5k)
o bi+b,j+bk = (ha)i +(Aa,)] + (hag)k
= b =Aa;, b, =Aa,, by =Aa,
= E = & = ﬁ =\
4 B
@iy Ifa alf a2] aalz, then a, a,,a,are also called direction ratios of a .
(iii) Incaseifitisgiventhat I, m, n are direction cosines of a vector, then [ + mj +nk

= (cosa)i + (cos B) ]+ (cosy)K is the unit vector in the direction of that vector,
where o, B and y are the angles which the vector makes with x, y and z axes
respectively.

Examiple 4 Find the values of x, y and z so that the vectors a=xi +2]j+zk and

b=2f +yj+k are equal.

Solution Note that two vectors are equal if and only if their corresponding components

are equal. Thus, the given vectors a and b will be equal if and only if

Xx=2,y=2,z=1



436 MATHEMATICS

Example 5 Let a=1+2] and b=2{+]. Is |a]=|b|? Are the vectors a and b
equal?

Solution We have |a|=+12+22 =5 and |b| «2° 1* 5

So, |a|=|b|. But, the two vectors are not equal since their corresponding components
are distinct.

Example 6 Find unit vector in the direction of vector a =27 +3] +k
: . . N L A~ 1
Solution The unit vector in the direction of a vector a is given by a = l—a f

a|
Now lal = 22432 +12 =14

~ 2 o 3 > 1 ~
21+3)+k) = —=1+—] +—=k
14( J+k) N14 o A14 7 A14

Example 7 Find a vector in the direction of vector a=i—2] that has magnitude

Therefore a=

7 units.

Solution The unit vector in the direction of the given vector a is
1 1 2 2 1 o~ 2 2

—a=-—=(-2]))=—7I—-——F]

lal 5 NG

Therefore, the vector having magnitude equal to 7 and in the direction of g is

a=

7/\ 7 14 2 A 7 |A 14 'j
a = —_—— e e
NN RN
Example 8 Find the unit vector in the direction of the sum of the vectors,
a=2i +2j-5k and b=2 + j+3K.
Solution The sum of the given vectors is

a b( csay)=4 3] 2k

and lc| = {42 +3* +(-2)? =29
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Thus, the required unit vector is

A 3 + 2
=— —2k) =

~ ~

Example 9 Write the direction ratio’s of the vector a =i + j — 2k and hence calculate
its direction cosines.

Solution Note that the direction ratio’s a, b, ¢ of a vector r =xi + yj +zk are just

the respective components x, y and z of the vector. So, for the given vector, we have
a=1,b=1and c =-2. Further, if I, m and n are the direction cosines of the given
vector, then

|:i:i mzizi n:i:—_Z aslrlz\lg

Thus, the direction cosines are ( 2 j

NN

10.5.2 Vector joining two_points
If P.(x,,y,, z,) and P.(x,, y,, z,) are any two points, then the vector joining P, and P,

is the vector PP, (Fig 10.15). Z
L ve . . D 4 ’P K Pz (xzayz,ZZ)
Joining the points P, and P, with the origin
O, and applying triangle law, from the triangle
OP P, we have A
k .
Y S
OR, + PP, = O, e Ak
. . . 7 e —>Y
Using the properties of vector addition, the i 40 j
above equation becomes
X .
PP, = OP,—OP, Fig 10.15

(X0 + Y, )+ 22|2)— (X0 + Y, ]+ lez)

i.e. PP,
= (% =)+ (Y, = V1) § + (2, —2))k

The magnitude of vector P,P, is given by

AP, = \/(Xz - X1)2 +(Y, — y1)2+(22 - 21)2
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Example 10 Find the vector joining the points P(2, 3, 0) and Q(- 1, — 2, — 4) directed
from P to Q.
Solution Since the vector is to be directed from P to Q, clearly P is the initial point
and Q is the terminal point. So, the required vector joining P and Q is the vector PQ,
given by

PQ = (-1-2)i+(-2-3)] +(-4-0)k
ie. PQ = -3 —5]-4k.
10.5.3 Section formula

Let P and Q be two points represented by the position vectorsOP and OQ, respectively,

with respect to the origin O. Then the line segment Q
joining the points P and Q may be divided by a third
point, say R, in two ways — internally (Fig 10.16)
and externally (Fig 10.17). Here, we intend to find

the position vector OR for the point R with respect O
to the origin O. We take the two cases one by one.

-
a

Case | When R divides PQ internally (Fig 10.16). P
Fig 10.16
If R divides PQ such that mRQ = nPR,

where m and nare positive scalars, we say that the point R divides PQ internally in the
ratio of m : n. Now from triangles ORQ and OPR, we have

RQ = OQ-OR=Db-r
and PR = OR-OP=r-a;
Therefore, we have m(-r) =n(r-a) (Why?)
mb + na TP
or r = (on simplification)
m+n

Hence, the position vector of the point R which divides P and Q internally in the
ratio of m : n is given by

mb + na
m+n

OR =
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Case Il When R divides PQ externally (Fig 10.17).
We leave it to the reader as an exercise to verify
that the position vector of the point R which divides
the line segment PQ externally in the ratio

. PR m .
m:n lLe — " is given by

QR

(0)

mb —na
m-n

Fig 10.17
Remark If R is the midpoint of PQ , then m = n. And therefore, from Case I, the

OR ~

midpoint R of PQ, will have its position vector as

a+b
2

Example 11 Consider two points P and Q with position vectors OP =3a —2b and

OR =

OQ a b .Findthe position vector of a point R which divides the line joining P and Q
inthe ratio 2:1, (i) internally, and (ii) externally.

Solution
(i) The position vector of the point R dividing the join of P and Q internally in the
ratio 2:1is
_ 2a+b)+@Ba-2b) 5a
- 2+1 3
(i) The position vector of the point R dividing the join of P and Q externally in the
ratio 2:1is
o = 2(a+b)2—(fa —-2b) YT

Example 12 Show that the points A2l | K), B(' 3] 5k), C(3 4] 4K) are
the vertices of a right angled triangle.

Solution We have
AB = (1-2)i +(-3+1)j+(-5-Dk | 2] 6k
BC = 3-1)i +(-4+3)j+(-4+5)k =2i - J+k
and CA = (2-3)i +(-1+4)j+(L+4)k =— +3]+5k
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Further, note that

|AB|* = 41=6+35=|BC|*+|CA[

Hence, the triangle is a right angled triangle.

1.

a1 B~ W N

(2]

10.
11.

12.
13,

14.
15.

| EXERCISE 10.2|

Compute the magnitude of the following vectors:

~ ~ o~ ~ ~ 1 ~ »
a=l+J+k; b=21-7j-3k; c=—7%=1+
V33T B
Write two different vectors having same magnitude.
Write two different vectors having same direction.
Find the values of x and y so that the vectors 2i +3] and xi +yj are equal.

Find the scalar and vector components of the vector with initial point (2, 1) and
terminal point (-5, 7).

Find the sumofthevectors a=1-2j+k, b =—2{+4j+5kandc=1 - 6] — 7K.
Find the unit vector in the direction of the vector a=1{+ j + 2K .

Find the unit vector in the direction of vector PQ, where P and Q are the points
(1,2, 3)and (4,5, 6), respectively.

For given vectors, a=2{ =j+2k and b =—i + j —k , find the unit vector in the
direction of the vector a+b.

Find a vector in the direction of vector 5f — j + 2k which has magnitude 8 units.
Show: that the vectors 2f — 3]+ 4k and —4i +6] —8k are collinear.

Find the direction cosines of the vector { +2 ] + 3k -

Find the direction cosines of the vector joining the points A (1, 2, -3) and
B(-1, -2, 1), directed from Ato B.
Show that the vector f + j+|2 is equally inclined to the axes OX, OY and OZ.
Find the position vector of a point R which divides the line joining two points P
and Q whose position vectorsare i +2j — K and -1+ T+ k respectively, in the
ratio2:1

(i) internally (i) externally
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16. Findthe position vector of the mid point of the vector joining the points P(2, 3, 4)
and Q(4, 1, -2).

17. Show that the points A, B and C with position vectors, a=3{-4]- 4k,

b=2i —j+ kand c=1i -3]- 5k , respectively form the vertices of a right angled
triangle.
18. Intriangle ABC (Fig 10.18), which of the following is not true:

(A) AB+ BC+CA=0
(B) AB+BC-AC=0

(C) AB+BC-CA=0 A B

(D) AB-CB+CA=0 Fig 10.18
19. If aand b are two collinear vectors, then which of the following are incorrect:

(A) b=2ia, for somescalari

(B) a=+b

(C) the respective components of a and b are proportional

(D) both the vectors a and b have same direction, but different magnitudes.

10.6 Product of Two Vectors

So far we have studied about addition and subtraction of vectors. An other algebraic
operation which we intend to discuss regarding vectors is their product. We may
recall that product of two numbers is a number, product of two matrices is again a
matrix. But in case of functions, we may multiply them in two ways, namely,
multiplication of two functions pointwise and composition of two functions. Similarly,
multiplication of two vectors is also defined in two ways, namely, scalar (or dot)
product where the result is a scalar, and vector (or cross) product where the
result is a vector. Based upon these two types of products for vectors, they have
found various applications in geometry, mechanics and engineering. In this section,
we will discuss these two types of products.

10.6.1 Scalar (or dot) product of two vectors

Definition 2 The scalar product of two nonzero vectors a and b, denotedby a - b, is



442 MATHEMATICS

defined as a-b=|allb|coso, A
where, 6 is the angle between a and b, 0 (Fig 10.19). 0
9
If either a=0 or b=0, then 6 is not defined, and in this case, . “
Fig 10.19

we definea b 0

Observations
1. a-b isareal number.

2. Let a and b be two nonzero vectors, then a-b =0 ifand only if a and b are
perpendicular to each other. i.e.

a-b=0< alb
3. Ife=0,then a-b=|a||b]|

In particular, a-a=|al?, as 6.in this case is 0.
4. If0=m, then a-b=—|al|b|

In particular, a ( a) . |af,as® in this caseis .
5. In view of the Observations 2 and. 3, for mutually perpendicular unit vectors

i § and k, we have

>

P
-

—
I
=)

—

k=1
0

>y —»o
1
=
-

=i

6. The angle between two nonzero vectors a and b is given by

cos ab L or 0 = oos ab
lallb] la|lb]

7. The scalar product is commutative. i.e.
a-b="b-a (Why?)
Two important properties of scalar product

Property 1 (Distributivity of scalar product over addition) Let a, b and ¢ be
any three vectors, then

a-b+c)=ab +ac
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Property 2 Let aand b be any two vectors, and A be any scalar. Then

(ra)-b=(a)b

(ab) a(b)

If two vectors a and b are given in component form as ai+a,j+ask and

bi +b, j+bsk , then their scalar product is given as

a-b = (ai+a,] +ak) (bi+b, j+bk)
af-(of +b,j+bK)+a,] (o, +b,] +bK) +ak- (Bf +b,] +b;K)
ayby (1) + ab, (7 J) +ayby (i -K) +aj, (J+1) + 2,0, (§- )+ ahy(3-K)

+ agb (K -T) +agb, (K - )+ agby (K - k) (Using the above Properties 1 and 2)

Thus

albl + a2b2 + a3b3

a-b = ab +ab, +a;b,

10.6.2 Projection of a vector on/a line

(Using Observation 5)

Suppose a vector AB makes an angle 6 with a given directed line | (say), in the

anticlockwise direction (Fig 10.20). Then the projection of AB on | is a vector P

(say) with magnitude | AB | cos 6, and the direction of p being the same (or opposite)
to that of the line I, depending upon whether cos® is positive or negative. The vector p

B

[
S~

K

C
(0°<0 <90
()

¢

0

9
A

-
c_»r

0
N\

g
B
(180°< 0 < 270"

(iii)

A

Fig 10.20

C > A
(90'< 0 < 180")
(i)

AW
s Q
"4
D>

0 ->
P C l

JAR
V‘:’\
e :
B

(270°< 0 < 360")
(iv)
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is called the projection vector, and its magnitude | P | is simply called as the projection

of the vector AB on the directed line I.
For example, in each of the following figures (Fig 10.20 (i) to (iv)), projection vector

of AB along the line | is vector AC.
Observations
1. If P isthe unitvectoralong a line I, then the projection of a vector a on the line
lisgivenby a f.
2. Projection of a vector a on other vector b, is given by
a-B, or a-(ij , or i(a- b)
|b] D]
3. If 6 =0, then the projection vector of AB will be ABitselfand if © =, then the
projection vector of AB will be BA .
3n
2

Remark If o, B and vy are the direction angles of vector a= a1f+ a2i+a3I2 , then its
direction cosines may be given as

T
4. 1f 0 :E or 6 =— then the projection vector of AB will be zero vector.

ai a
—= oS i,andcos e

lalli| [a] |a| la|

Also, note that |a |cosa, |alcosp and |a|cosy are respectively the projections of
a along OX, OY and OZ. i.e., the scalar componentsa , a, and a, of the vector a,
are precisely the projections of a along x-axis, y-axis and z-axis, respectively. Further,
if a is a unit vector, then it may be expressed in terms of its direction cosines as

a= cosai +cos pj + cosyk
Example 13 Find the angle between two vectors a and b with magnitudes 1 and 2
respectively and when a-b=1,
Solution Given a b 1, |a| land|b| 2.We have

ab
! cos !
lallb]

COS

N |-
w |
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Example 14 Find angle ‘0’ between the vectors a=1i+j—Kk and b=i-j+k.

Solution The angle 6 between two vectors a and b is given by

a.
c0s6 = ——
lallb]
Now ab=@0+]-k)-(I-]+k)=1-1-1=-1,
-1
Therefore, we have cos6 = 3
. . 1
hence the required angle is 6 = Cos 3

Example 15 If a=5{ — -3k and b=i +3] -5k , then show-that the vectors

a+band a—b are perpendicular.

Solution We know that two nonzero vectors are perpendicular if their scalar product
is zero.

Here a+b = (51— ]—3K)+ (i +3]-5k)=6i +2]-8k
and a-b = (51-]-3K)-(i+3]-5Kk =4 —4]+2k
So (a+b)-(a—b) =(6 +2j—8k)- (4 — 4]+ 2k) =24—8-16= 0.

Hence a+b and a-b are perpendicular vectors.
Example 16 Find the projection of the vector a=2i +3]+ 2k on the vector
b=i+2]+kK .
Solution The projection of vector a on the vector b is given by
i(a-b) _ (2><1+3><2+2><1):£:§ 5
b Joir@?r@? 6 3

Example 17 Find |a—b|, if two vectors a and b are such that |a| 2, |b| 3

and a-b=4.
Solution We have
la b

(a-b)-(a-h)

aa—-a-b-b-a+b-b
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lal* —2(a-b)+|b [
(27 -2(4)+(3)°
Therefore la-b| =45

Example 18 If a isa unit vector and (x —a)-(x+a) =48, then find | x|.

Solution Since a is a unit vector, |a |= 1. Also,
(x—-a)-(x+a) =8

or X-X+X-a—-a-Xx—a-a =38
or IxP 1=8ie|xF=9
Therefore | x| =3 (as magnitude of a vector is non negative).

Example 19 For any two vectors a and b, we always have |a-b[<|a||b | (Cauchy-
Schwartz inequality).

Solution The inequality holds trivially when either a=0 or b=0.Actually, insucha

situation we have |a-b|=0=|a||b]|. So, let us assume that |a|=0=|b] .
Then, we have

la-b
B = |cosO|<1
Therefore la-b|<|al|b]|
Example 20 For any two vectors a and b, we always e C
have |a+b|<|a|+]|b | (triangle inequality). 3 e
Solution The inequality holds trivially in case either A re B
a=0orb=0 (How?).So, let|a] 0 [b]. Then,
la+b P = (a+b)2=(a+b)-(a+b) Fig 10.21
—a-a+a-b+b-a+b-b
= |af* +2a-b+|b|? (scalar product is commutative)
< laf+2]a-b|+|bJ (since x <|x|VxeR)
< laP+2]allb|+|b ] (from Example 19)

(al [bD*
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Hence la b|<|al |b]
Remark If the equality holds in triangle inequality (in the above Example 20), i.e.
a+b|= |a|+[b],

then |AC| = |AB|+|BC]|

showing that the points A, B and C are collinear.

Example 21 Show that the points A(-2f +3] +5k), B(1 +2]+3k) and C(7f —k)

are collinear.

Solution We have
AB=@ 21 (2 3] (8 5k 3 j 2,
BC=(7 )i (0 2] (1 3k 6i 2] 4k,
AC=(7 2i (0 3] (1 5 9 3] 6k

|AB| =14, |BC| 214 and |AC| 314
Therefore |AC| =|AB|+|BC|
Hence the points A, B-and C are collinear.

In Example 21, one may note that although AB+BC +CA =0 but the
points A, B and C do not form the vertices of a triangle.

|EXERCISE 10.3

1. Find the angle between two vectors a and b with magnitudes J§ and 2,
respectively having a-b = /6 .

Find the angle between the vectors = 2]°+3|2 and 3iA—2j+lz

Find the projection of the vector i— j on the vector i + .

Find the projection of the vector {4 3] +7k on the vector 7j — j + 8k -
Show that each of the given three vectors is a unit vector:

g B~ W DN

%(2?+3]°+6IZ), %(3i‘—ej+2|2), %(6f+ 27 3K)

Also, show that they are mutually perpendicular to each other.
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11.

12.
13.

14.

15.

16.
17.

18.
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Find |a| and [b|,if (a+b)- (a—b)=8 and|al=8]b].
Evaluate the product (3a—5b)-(2a+7b).

Find the magnitude of two vectors a and b, having the same magnitude and

such that the angle between them is 60° and their scalar product is %

Find | x|, if for aunit vector a, (x —a)-(x+a)=12.

If a=2i +2]+3k, b=—1+2j+k and ¢ =37+ ] are such that a+2b is
perpendicular to ¢, then find the value of A.

Show that |a|b+|b|a is perpendicularto |a|b—|b |a, forany two nonzero
vectors aandb .

If a-a=0 and a-b =0, then what can be concluded about the vector b ?

If a,b,c are unit vectors such that a+hb+c¢=0, find the value of
a-b+b-c+c-a.

If either vector a=0 or b =0, then a-b = 0. But the converse need not be
true. Justify your answer with an example.

If the vertices A, B, C of a triangle ABC are (1, 2, 3), (-1, 0, 0), (0, 1, 2),
respectively, then find ZABC. [ZABC is the angle between the vectors BA
and BC].

Show that the points A(1, 2, 7), B(2, 6, 3) and C(3, 10, —1) are collinear.

Show that the vectors 2 — j+ k, {—3]—5k and 3i —4 ] —4k form the vertices
of aright angled triangle.

If a isanonzero vector of magnitude ‘a’ and A a nonzero scalar, then A a is unit
vector if

(A) L=1 (B) ,=—1 (C) a=|r| (D) a=1/A|

10.6.3 \ector (or cross) product of two vectors

In Section 10.2, we have discussed on the three dimensional right handed rectangular
coordinate system. In this system, when the positive x-axis is rotated counterclockwise
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into the positive y-axis, a right handed (standard) screw would advance in the direction
of the positive z-axis (Fig 10.22(i)).

In a right handed coordinate system, the thumb of the right hand points in the
direction of the positive z-axis when the fingers are curled in the direction away from
the positive x-axis toward the positive y-axis (Fig 10.22(ii)).

V/

X D, (i)
Fig 10.22 (i), (ii)

Definition 3 The vector product of two nonzero vectors aand b, isdenotedby a b
and defined as

axb =|alb|sin6 A,

>

where, 0 is the angle between aandb, 0<0<m and f is

a unit vector perpendicular to both a and b, such that -
a,b and A form a right handed system (Fig 10.23). i.e., the A :

right handed system rotated from atob moves in the YV

Fig 10.23

direction of f.

Ifeither a=0orb =0, then 0 is not defined and in this case, we define axb =0.
Observations

1. axb isa vector.

2. Let aandb be two nonzero vectors. Then axb =0 if and only if a and b
are parallel (or collinear) to each other, i.e.,

axb=0<a b
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In particular, axa =0 and ax(-a)=0, since in the first situation, 6 =0
and in the second one, 6 = t, making the value of sin6 to be 0.

3. If Ethena b |a|b]. 2
4. Inview of the Observations 2 and 3, for mutually perpendicular
unit vectors i, j and k (Fig 10.24), we have ) \A
Pxf = ixj=kxk=0 N
ixj=k, jxk=i, kxi=] R 10.2%
5. In terms of vector product, the angle between two vectors a and b may be
given as
sin 6 2xb]|
laflb|

6. Itisalways true that the vector product is not commutative, as axb = —bxa_

Indeed, axb =| a|/b|sinff, where a,b and A form a right handed system,
i.e., Oistraversed from a to b, Fig 10.25(i). While, bxa g a||b |sin0f,, where

b,aand i, form a right handed system i.e. 6 is traversed from bto a,

Fig 10.25(ii).
A
n
0
9
a ->
b
@) (ii)

Fig 10.25 (i), (ii)
Thus, if we assume aand b to lie in the plane of the paper, then A and i, both

will be perpendicular to the plane of the paper. But, n being directed above the
paper while A directed below the paper. i.e. i, =—1.
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Hence axb =|allb|sin A

= —]a|b|sin6f, =-bxa
In view of the Observations 4 and 6, we have

o

ixiA:—Iz, K x i:—i and iAxIZ:—J_

If aandb represent the adjacent sides of a triangle then its area is given as

1
Ela bl. C

By definition of the area of a triangle, we have from 7,
Fig 10.26,

0 s
D5

Fig 10.26

1
Area of triangle ABC = EAB-CD.
But AB=|b| (as given), and CD = |a|sin®.
_ 1 . 1
Thus, Area of triangle ABC = Elbllalsme =§|a><b |

If a and b represent the adjacent sides of a parallelogram, then its area is

given by |axh|. D, C
From Fig 10.27, we have :
Avrea of parallelogram ABCD = AB. DE.
But AB=|b]| (as given), and

C
DE=|a|sin®.. A E > B
Thus, Fig 10.27

Area of parallelogram ABCD = |b|la|sin® =]axb]|.
We now state two important properties of vector product.

Property 3 (Distributivity of vector product over addition): If a, b and ¢
are any three vectors and A be a scalar, then

(i) ax(b+c)=a b a c

(i) Maxb) = (La)xb =ax(Lb)
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Let aandb be two vectors given in component form as a,i +a,] +a.k and

bi +b, j+bgk , respectively. Then their cross product may be given by

i ] K
axb =|a a; a3
b.l. b2 b3

Explanation We have
(ai+a,j+ aelz) x (B +b,J + bslz)

ay, (I 1)+ ab, (T x ) +ayb; (T x k) +ayby (x1)
+ ah, (Jx ) +a,by (%K)
+ gy (Kx 1) +ag, (kx )+ ay (kx k)

= albz(iAX j)—alb3(I2xf)—a2bl(ij)

+ aby (Jxk)+agb, (kxi)—az, (jxk)
=jxi=l€xl§=0 and ixk=—kxi, jxi=-ix] and |2x¢=—ixlz)
= albzlz—ale]—a?_bllz+ azbsiA‘*asbl]—asbziA

(@s iIxj=k, jxk=0 and kxi=J)

(a,h, — ajb, )i —(ab, —a;) J + (ab, — ab)k

axb

(by Property 1)

~

(@s Txi

A~ A~

i ] ok
=l a &
b b, b

Example 22 Find |axb |, if a=2f+ j+3k and b=31 +5]-2k
Solution We have

K
3

axb =

|
w N =
gl P oo

=2
1(-2-15)— (-4 -9)J + 00 -3)k =177 +13j+ 7k

la b| = {/(-17)% + (13)% + (7)? =J507

Hence
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Example 23 Find a unit vector perpendicular to each of the vectors (a+b) and
(a—b),where a=i+j+k, b=f+2]+3k.
Solution We have a+b=27+3]+4k and a—b =—]-2k

A vector which is perpendicular to both a+b and a—b is given by

A~ A ~

i j k
(a+b)x(a—b) = [2 3 4|=-21+4]-2k (=c, say)
0 -1 -2
Now lc| = VA+16+4 =24 =2/6
Therefore, the required unit vector is
C _1,\ a_ik\
lc|- V6 ¥ 6

There are two perpendicular directions to any plane. Thus, another unit

vector perpendicular to a+bh and a—b will be — +—k But that will
J‘ J‘ V6

be a consequence of (a—b)x(a+b).

Example 24 Find the area of a triangle having the points A(1, 1, 1), B(1, 2, 3)
and C(2, 3, 1) as its vertices.

Solution We have AB=j+ 2k and AC=1+2]. The area of the given triangle

1
is = | ABxAC]| .
2
Pk
Now, ABxAC =0 1 2|=-4i+2]-k
120

Therefore |ABXAC| = \16+4+1 =21

1
Thus, the required area is E\/Z
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Example 25 Find the area of a parallelogram whose adjacent sides are given

by the vectors a=3i+ j+4k andb =1 — j+k

Solution The area of a parallelogram with aandb as its adjacent sides is given

by |axb|.
i ok

Now axb =3 1 4=5+]-4
1 -1 1

Therefore laxb| = \25+1+16 =/42

and hence, the required area is Va2

| EXERCISE 10:4|

1. Findlaxb| if a=i-7j+7kand b=3i 2] +2k.

2. Find a unit vector perpendicular to each of the vector a+b and a—b, where
a=3i+2]+2kand b=F+2j-2k.

3. Ifaunit vector a makes angles g with ?, g with I and an acute angle 6 with
k , then find ® and hence, the components of a.

4. Show that

(a—b)x(a+b) = 2(axb)

5. Find Aand pif (27 + 6] +27K)x (1 +2] +pk) =0

6. Giventhat a b 0 and axb =0. What can you conclude about the vectors
aandb ?

7. Let the vectors a,b, ¢ be given as aji+a,]+ak, bi+b,j+bk,
G+, ]+C;k . Then show that ax (b +c)=axb+axc.

8. If either a=0 or b=0, then axb =0. Is the converse true? Justify your
answer with an example.

9. Find the area of the triangle with vertices A(1, 1, 2), B(2, 3, 5) and C(1, 5, 5).
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10. Find the area of the parallelogram whose adjacent sides are determined by the
vectors a={- j+3k and b=27-7]+k-

2

11. Let the vectors a and b be such that |a|=3 and |b|=?, then axb is a

unit vector, if the angle between a and b is
(A) n/6 (B) m/4 (C) m/3 (D) m/2
12. Area of a rectangle having vertices A, B, C and D with position vectors

—f+%j+4|€, f+%j+4|€, ?_%]+4|2 and—f-%j+4l€,reSpectively is

1
(A) > B)1
€) 2 (D) 4
Miscellaneous Examples

Example 26 Write all the unit vectors in XY-plane.

Solution Let r = xi+ ij be a unit vector in XY-plane (Fig 10.28). Then, from the
figure, we have x = cos 6and y=sin 0 (since |r | =1). So, we may write the vector r as

~

r(=op)=cos i sin j .. (1)
Clearly, Ir| = Jcos?0+sin?0 =1
Y
N P(cos0, sin0)
7 —
<'(\/ A OP’ = cos07
0 '?‘y _,> LA
X’ O ll" X P'P=sinbj
YI
Fig 10.28

Also, as 0 varies from 0 to 2, the point P (Fig 10.28) traces the circlex’*+y?>=1
counterclockwise, and this covers all possible directions. So, (1) gives every unit vector

in the XY-plane.
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Example 27 1f § jJ k 2 5}, 31 2] 3k and i 6] k are the position
vectors of points A, B, C and D respectively, then find the angle between AB and
CD . Deduce that AB and CD are collinear.

Solution Note that if 0 is the angle between AB and CD, then 6 is also the angle
between AB and CD.

Now AB = Position vector of B — Position vector of A
= (2N +5])-(T+J+K =1+4] -k

Therefore |AB| = \J(1)?+ (4)2 +(-1)% =342
Similarly CD = -2i-8]+2k and |CD|=6v2
o . ABCD

us 00 = L BicD]

_A-2)+4-8)+(-1)(2) 36
- (3M2)(6v2) 36

Since 0 < 0 <, it follows that 8 = «. This shows that AB and CD are collinear.

=1

Alternatively, AB %CD which implies that ABand CD are collinear vectors.

Example 28 Let a,b and c be three vectors such that |a|=3, |b |=4,|c|=5 and

each one of them being perpendicular to the sum of the other two, find |a+b+c|.

Solution Given a- (b +¢) = 0, b-(c+a)=0, ¢c- (@ +b)=0.

Now la+b+cP = (a+b+c)?=(a+b+c)-(a+b+c)

a-a+a-b+c)+b-b+b-(a+c)

+ c.(a+b)+cc

=laf +[b [ +|cf
=9+16+25=50

Therefore la+b +c|= 50=52
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Example 29 Three vectors g, b and ¢ satisfy the condition a +b +c¢ =0. Evaluate
the quantity y=a-b +b-c+c-a, if |a|=1, |b]=4 and |c|=2.

Solution Since a+b+c =0, we have

a(a b ¢=o
or a-a+a-b+a-c =0
Therefore a-b+a-c=—|af =-1 (D)
Again, b-(a+b+c) =0
or a-b+b-c = —|p| =-16 L@
Similarly a-c+b-c =—-4. .. (3)

Adding (1), (2) and (3), we have
2(a-b+b:c+a-c) =-21
=21

or 2u==21,ie,u= 3

Example 30 If with reference to the right handed system of mutually perpendicular
unit vectors i, jand k, o =3 — j, p=2i+ -3k, then express B in the form

. ., Where isparallelto and , isperpendicularto o.

Solution Let , , ,isascalar ie., B, = M —AJ-

Now B,=B—PB, = (2-30)i +@A+1)] -3k .
Now, since {3, is to be perpendicular to a, we should have «-B, =0.i.e.,

32-30) -1+ A) =0

1
0 A= —
' 2

N | w
[S—)
|
w
=

3~ 1- 1.
Therefore B, = E| _EJ and B, :? +
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Miscellaneous Exercise on Chapter 10
Write down a unit vector in XY-plane, making an angle of 30° with the positive
direction of x-axis.

Find the scalar components and magnitude of the vector joining the points
P(x, y,z)and Q(X, Y, Z,).

A girl walks 4 km towards west, then she walks 3 km in a direction 30° east of
north and stops. Determine the girl’s displacement from her initial point of
departure.

If a=b+c,thenisittrue that |a|=|b|+|c|? Justify your answer.

Find the value of x for which x (i’ + J +k) is a unitvector

Find a vector of magnitude 5 units, and parallel to the resultant of the vectors
a=21+3]-k and b=7-2] +k.

If a=1+]+k, b=2i—j+3Kk and ¢c=i-2]+k, find a unit vector parallel
to the vector 2a— b +3c .

Show that the points A(1,-2,-8),B (5,0,-2) and C (11, 3, 7) are collinear, and
find the ratio in which B divides AC.

Find the position vector of a point R which divides the line joining two points
P and Q whose position vectors are (2a+b) and (a— 3b) externally in the ratio
1: 2. Also, show that P is the mid point of the line segment RQ.

The two adjacent sides of a parallelogram are 2?—4]+5I2 and f—2]°—3|2-

Find the unit vector parallel to its diagonal. Also, find its area.
Show that the direction cosines of a vector equally inclined to the axes OX, OY

/1 1

Let a=i+4]+2k b=3—2]+7k and ¢=2i— j+4k. Find a vector d

and OZ are

which is perpendicular to both a and b,and ¢c-d =15.

The scalar product of the vector i+ j+l€ with a unit vector along the sum of
vectors 2f +47—5k and A+ 2] +3k is equal to one. Find the value of A.

If a, b, c are mutually perpendicular vectors of equal magnitudes, show that

the vector a+b + ¢ isequally inclinedtoa, b and c.
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Prove that (a+b)-(a+b)ga|*+|b[*, ifand only if a, b are perpendicular,

given a=0,b #0.

Choose the correct answer in Exercises 16 to 19.

16.

17.

18.

19.

If 6 is the angle between two vectors a and b, then a-b >0 only when

(A) 0<e<g (B) osesg
(C) 0<B<n (D) 0<6<n

Let a and b be two unit vectors and 6 is the angle between them. Then a+b
is a unit vector if
v T T 27
A) 0=— B) 0=— C O=— D) =—
(A) n (B) 3 ©) ] (D) A
Thevalueof (] k) J (7 k) k(i J)is
(A) O (B) -1 €1 (D) 3
If 6 is the angle between any two vectors a and b, then |a-b|=|a xb| when
0 is equal to

L L
(A) 0 ®) © 5 (D) =

Summary

Position vector of a point P(x,y, z) is givenas OP(=r) = xi + yj + zk , and its

magnitude by /¥ +y? + 2 .

The scalar components of a vector are its direction ratios, and represent its
projections along the respective axes.

The magnitude (r), direction ratios (a, b, ¢) and direction cosines (I, m, n) of
any vector are related as:

The vector sum of the three sides of a triangle taken in order is 0.
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The vector sum of two coinitial vectors is given by the diagonal of the
parallelogram whose adjacent sides are the given vectors.

The multiplication of a given vector by a scalar A, changes the magnitude of
the vector by the multiple |A|, and keeps the direction same (or makes it
opposite) according as the value of A is positive (or negative).

For a given vector g, the vector 4= ﬁ gives the unit vector in the direction
a

of a.
The position vector of a point R dividing a line segment joining the points

P and Q whose position vectors are a and b respectively, in the ratiom: n

() internally, is given by 2 0 .
m-+n

(i) externally, is given by s T
m-n

The scalar product of two given vectors aand b having angle 6 between
them is defined as

a-b=|allb|cos6.

Also, when a-b is given, the angle ‘6’ between the vectors a and b may be
determined by

If 6 is the angle between two vectors aand b , then their cross product is
given as

axb=|a|b|sinbnh
where fi isa unit vector perpendicular to the plane containing a and b . Such
that a, b, A form right handed system of coordinate axes.
If we have two vectors aandb, given in component form as

a=aji+a,j+ak and b=hi+b,]j+hk and A any scalar,
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then a+b = (g +b)i+(a,+b)j+(a +by)k;

aa = (ha)i +(2a,)] +(hay)k;
ab = ajb +ab, +ab;;
P j ok
and axb =|a b ¢cf.
a b, c

Historical Note

The word vector has been derived from a Latin word vectus, which means
“to carry”. The germinal ideas of modern vector theory date from around 1800
when Caspar Wessel (1745-1818) and Jean Robert Argand (1768-1822) described
that how a complex number a + ibcould be given a geometric interpretation with
the help of a directed line segment in a coordinate plane. William Rowen Hamilton
(1805-1865) an Irish mathematician was the first to use the term vector for a
directed line segment in his book Lectures on Quaternions (1853). Hamilton’s
method of quaternions (an ordered set of four real numbers given as:

a+bi +cj+dk, 1, j, k following certain algebraic rules) was a solution to the

problem of multiplying vectors in three dimensional space. Though, we must
mention here that in practice, the idea of vector concept and their addition was
known much earlier ever since the time of Aristotle (384-322 B.C.), a Greek
philosopher, and pupil of Plato (427-348 B.C.). That time it was supposed to be
known that the combined action of two or more forces could be seen by adding
them according to parallelogram law. The correct law for the composition of
forces, that forces add vectorially, had been discovered in the case of perpendicular
forces by Stevin-Simon (1548-1620). In 1586 A.D., he analysed the principle of
geometric addition of forces in his treatise DeBeghinselen der Weeghconst
(“Principles of the Art of Weighing”), which caused a major breakthrough in the
development of mechanics. But it took another 200 years for the general concept
of vectors to form.

In the 1880, Josaih Willard Gibbs (1839-1903), an American physicist

and mathematician, and Oliver Heaviside (1850-1925), an English engineer, created
what we now know as vector analysis, essentially by separating the real (scalar)
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part of quaternion from its imaginary (vector) part. In 1881 and 1884, Gibbs
printed a treatise entitled Element of Vector Analysis. This book gave a systematic
and concise account of vectors. However, much of the credit for demonstrating
the applications of vectors is due to the D. Heaviside and P.G Tait (1831-1901)
who contributed significantly to this subject.

4

> ——

o,
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(X ¥a 2,) @nd (%, Y;, Z5) is

*

*

*

*

2

2

*

*

X=X Y-y -7
X=X Yo=Y L, _g,
Xs—X Ys— Vi Z3—174
Vector equation of a plane that contains three non collinear points having
position vectors a, b and cis (r—-a) .[(b -a)x(c—-a)]=0
Equation of a plane that cuts the coordinates axes at (a, 0, 0), (0, b, 0) and

(0,0,c)is

§ +% +% =1
Vector equation of a plane that passes through the intersection of
planesr-n, =d, andr-n,=d, is r-(n,+ An,)=d, + Ad,, where A is any
nonzero constant.

Vector equation of a plane that passes through the intersection of two given
planes A x+B,y+C z+D,=0and A, x+B,y+C,z+D,=0

is(A,x+B,y+C,z+D)+A(A,x+B,y+C,z+D,) =0.

Two lines r = a +Ab and r = a, + pb, are coplanar if
(8, —2,)- (b xby) =0

X=X Y=V -7 X=X,

In the cartesian form two lines and
a b G a,
y-y, 2-2 R
N b == c 2 are coplanar if | & by 5ol =a
2 2 d b, C,

In the vector form, if 6 is the angle between the two planes, r-n =d, and
r-n,=d,, then 6 = cos* M

[n [, |
The angle ¢ between the line r =a + A b and the plane r.A =d is
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b-f
Ib]IA]
The angle 6 between the planes Ax +By + Cz+ D, =0 and
A,x+B,y+C,z+D, =0is given by

sin ¢ =

A A, +B, B, +C, C,
JAZ + B2+ C2 A2 +B2+C2

CcosO =

The distance of a point whose position vector is a fromthe planer -A=d is

|d —a -]

The distance from a point (x,y,,z,) to the plane Ax + By + Cz+ D =0'is

Ax, + By, +Cz, + D
JA?+B?+C2




Chapter 12
LINEAR PROGRAMMING

¢ The mathematical experience of the student is incomplete if he never had
the opportunity to solve a problem invented by himself. — G. POLYA ¢

12.1 Introduction

In earlier classes, we have discussed systems of linear
equations and their applications in day to day problems. In
Class XI, we have studied linear inequalities and systems
of linear inequalities in two variables and their solutions by
graphical method. Many applications in mathematics
involve systems of inequalities/equations. In this chapter,
we shall apply the systems of linear inequalities/equations
to solve some real life problems of the type as given below:

A furniture dealer deals in only two items—tables and
chairs. He has Rs 50,000 to invest and has storage space
of at most 60 pieces. A table costs Rs 2500 and a chair
Rs 500. He estimates that from the sale of one table, he
can make a profit of Rs 250 and that from the sale of one L. Kantorovich
chair a profit of Rs 75. He wants to know how many tables and chairs he should buy
from the available money so as to maximise his total profit, assuming that he can sell all
the items which he buys.

Such type of problems which seek to maximise (or, minimise) profit (or, cost) form
a general class of problems called optimisation problems. Thus, an optimisation
problem may involve finding maximum profit, minimum cost, or minimum use of
resources etc.

A special but a very important class of optimisation problems is linear programming
problem. The above stated optimisation problem is an example of linear programming
problem. Linear programming problems are of much interest because of their wide
applicability in industry, commerce, management science etc.

In this chapter, we shall study some linear programming problems and their solutions
by graphical method only, though there are many other methods also to solve such
problems.
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12.2 Linear Programming Problem and its Mathematical Formulation

We begin our discussion with the above example of furniture dealer which will further
lead to a mathematical formulation of the problem in two variables. In this example, we
observe

(i) The dealer can invest his money in buying tables or chairs or combination thereof.
Further he would earn different profits by following different investment
strategies.

(i) There are certain overriding conditions or constraints viz., his investment is
limited to a maximum of Rs 50,000 and so is his storage space which is for a
maximum of 60 pieces.

Suppose he decides to buy tables only and no chairs, so he can buy 50000 + 2500,
i.e., 20 tables. His profit in this case will be Rs (250 x 20), i.e., Rs 5000.

Suppose he chooses to buy chairs only and no tables. With his capital of Rs50,000,
he can buy 50000 + 500, i.e. 100 chairs. But he can store only 60 pieces. Therefore, he
is forced to buy only 60 chairs which will give him a total profit of Rs (60 x 75), i.e.,
Rs 4500.

There are many other possibilities, for instance, he may choose to buy 10 tables
and 50 chairs, as he can store only 60 pieces. Total profit in this case would be
Rs (10 x 250 + 50 x 75), i.e., Rs 6250 and so on.

We, thus, find that the dealer can invest his money in different ways and he would
earn different profits by following different investment strategies.

Now the problem’is : How should he invest his money in order to get maximum
profit? To answer this question, let us try to formulate the problem mathematically.

12.2.1 Mathematical formulation of the problem
Let x be the number of tables and y be the number of chairs that the dealer buys.
Obviously, x and y must be non-negative, i.e.,

x=0 (Non-negative constraints) )
)= 0 ’ .. (2

The dealer is constrained by the maximum amount he can invest (Here it is
Rs 50,000) and by the maximum number of items he can store (Here it is 60).
Stated mathematically,
2500x + 500y < 50000 (investment constraint)
or Sx +y <100 .. (3)
and X +y <60 (storage constraint) .. (4)
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The dealer wants to invest in such a way so as to maximise his profit, say, Z which
stated as a function of x andy is given by

Z = 250x + 75y (called objective function) ... (5)
Mathematically, the given problems now reduces to:
Maximise Z = 250x + 75y
subject to the constraints:
5x +y <100

X +y<60
x>0, y=>0

So, we have to maximise the linear function Z subject to certain conditions determined
by a set of linear inequalities with variables as non-negative. There are also some other
problems where we have to minimise a linear function subject to certain conditions
determined by a set of linear inequalities with variables as non-negative. Such problems
are called Linear Programming Problems.

Thus, a Linear Programming Problem is one that is concerned with finding the
optimal value (maximum or minimum value) of a linear function (called objective
function) of several variables (say x and y), subject to the conditions that the variables
are non-negative and satisfy a set of linear inequalities (called linear constraints).
The term linear implies that all the mathematical relations used in the problem are
linear relations while the term programming refers to the method of determining a
particular programime or plan of action.

Before we proceed further, we now formally define some terms (which have been
used above) which we shall be using in the linear programming problems:

Objective function Linear function Z = ax + by, where a, b are constants, which has
to be maximised or minimized is called a linear objective function.

In the above example, Z = 250x + 75y is a linear objective function. Variables x and
y are called decision variables.
Constraints The linear inequalities or equations or restrictions on the variables of a
linear programming problem are called constraints. The conditions x > 0, y > 0 are
called non-negative restrictions. In the above example, the set of inequalities (1) to (4)
are constraints.

Optimisation problem A problem which seeks to maximise or minimise a linear
function (say of two variables x and y) subject to certain constraints as determined by
a set of linear inequalities is called an optimisation problem. Linear programming
problems are special type of optimisation problems. The above problem of investing a
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given sum by the dealer in purchasing chairs and tables is an example of an optimisation
problem as well as of a linear programming problem.

We will now discuss how to find solutions to a linear programming problem. In this
chapter, we will be concerned only with the graphical method.

12.2.2 Graphical method of solving linear programming problems

In Class X1, we have learnt how to graph a system of linear inequalities involving two
variables x and y and to find its solutions graphically. Let us refer to the problem of
investment in tables and chairs discussed in Section 12.2. We will now solve this problem
graphically. Let us graph the constraints stated as linear inequalities:

5x +y <100 (1)
X+ y<60 .. (2)
x>0 -« (3)
y=>0 .. (4)

The graph of this system (shaded region) consists of the points common to all half
planes determined by the inequalities (1) to (4) (Fig 12.1). Each point in this region
represents a feasible choice open to the dealer for investing in tables and chairs. The
region, therefore, is called the feasible region for the problem. Every point of this
region is called a feasible solution to the problem. Thus, we have,

Feasible region The common region determined by all the constraints including
non-negative constraints x, y > 0 of a linear programming problem is called the feasible
region (or solution region) for the problem. In'Fig 12.1, the region OABC (shaded) is
the feasible region for the problem. The region other than feasible region is called an
infeasible region.

Feasible solutions Points within and on the
boundary of the feasible region represent
feasible solutions of the constraints. In
Fig 12.1, every point within and on the
boundary of the feasible region OABC
represents feasible solution to the problem.
For example, the point (10, 50) is a feasible
solution of the problem and so are the points
(0, 60), (20, 0) etc.

Any point outside the feasible region is
called an infeasible solution. For example, 30 40 50 60\70
the point (25, 40) is an infeasible solution of

h bl Y Sx+y=100 x+y=60
the problem. Fig 12.1
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Optimal (feasible) solution: Any point in the feasible region that gives the optimal
value (maximum or minimum) of the objective function is called an optimal solution.

Now, we see that every point in the feasible region OABC satisfies all the constraints
as givenin (1) to (4), and since there are infinitely many points, it is not evident how
we should go about finding a point that gives a maximum value of the objective function
Z = 250x + 75y. To handle this situation, we use the following theorems which are
fundamental in solving linear programming problems. The proofs of these theorems
are beyond the scope of the book.

Theorem 1 Let R be the feasible region (convex polygon) for a linear programming
problem and let Z = ax + by be the objective function. \When Z has an optimal value
(maximum or minimum), where the variables x andy are subject to constraints described
by linear inequalities, this optimal value must-occur at a corner point* (vertex) of the
feasible region.

Theorem 2 Let R be the feasible region for a linear programming problem, and let
Z = ax + by be the objective function. If R is bounded™**, then the objective function

Z has both a maximum and a minimum value on R and each of these occurs at a
corner point (vertex) of R.

Remark If R is unbounded, then a maximum or a minimum value of the objective
function may not exist. However, if it exists, it must occur at a corner point of R.
(By Theorem 1).

In the above example, the corner points (vertices) of the bounded (feasible) region
are: O,A, Band C and itis easy to find their coordinates as (0, 0), (20, 0), (10, 50) and
(0, 60) respectively. Let us now compute the values of Z at these points.

We have

Vertex of the Corresponding value
Feasible Region of Z (in Rs)
0 (0,0) 0
C (0,60) 4500 .
B (10,50) 6250 <— | Maximum
A(20,0) 5000

*  Acorrer point of a feasible region is a point in the region which is the intersection of two boundary lines.

**  Afeasible region of a system of linear inequalities is said to be bounded if it can be enclosed within a
circle. Otherwise, it is called unbounded. Unbounded means that the feasible region does extend
indefinitely in any direction.



LINEAR PROGRAMMING 509

We observe that the maximum profit to the dealer results from the investment
strategy (10, 50), i.e. buying 10 tables and 50 chairs.

This method of solving linear programming problem is referred as Corner Point
Method. The method comprises of the following steps:

1. Find the feasible region of the linear programming problem and determine its
corner points (vertices) either by inspection or by solving the two equations of
the lines intersecting at that point.

2. Evaluate the objective function Z = ax +by at each corner point. Let M and m,
respectively denote the largest and smallest values of these points.

3. (i) When the feasible region is bounded, M and m are the maximum and

minimum values of Z.
(i) In case, the feasible region is unbounded, we have:

4. (a) M is the maximum value of Z, if the open half plane determined by
ax + by > M has no point in common with the feasible region. Otherwise, Z
has no maximum value.

(b) Similarly, misthe minimum value of Z, if the open half plane determined by
ax + by < m has no point in common with the feasible region. Otherwise, Z
has nominimum value.
We will now illustrate these steps of Corner Point Method by considering some
examples:

Example 1 Solve the following linear programming problem graphically:

Maximise Z = 4x +y . @
subject to the constraints:

X+y < 50 .. (2)

3x+y < 90 .. (3

x>20,y>0 .. (4)

Solution The shaded region in Fig 12.2 is the feasible region determined by the system
of constraints (2) to (4). We observe that the feasible region OABC is bounded. So,
we now use Corner Point Method to determine the maximum value of Z.

The coordinates of the corner points O, A, B and C are (0, 0), (30, 0), (20, 30) and
(0, 50) respectively. Now we evaluate Z at each corner point.
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Corner Point

Corresponding value

120 €— |Maximum

of Z
©,0) 0
(30,0)
(20, 30) 110
(0, 50) 50
X! o 10 20 \40 Nm X
Y A@30,0) x+y=50
Fig 12.2

Hence, maximum value of Z is 120 at the point (30, 0).

Example 2 Solve the following linear programming problem graphically:

Minimise Z = 200 x+ 500 y
subject to the constraints:
X+ 2y =10
3x+4dy <24
x=0,y=>0

- (1)

- (2
- (3
. (4

Solution The shaded region in Fig 12.3 is the feasible region ABC determined by the
system of constraints (2) to (4), which is bounded. The coordinates of corner points

‘{ Corner Point | Corresponding value
T of Z
N3C(0,6)
0.5) 0,5) 2500
N (4,3) 2300 €—
44 (0,6) 3000
3 -+
2 .
14 (10,0
X" — f d X
O T T T T T T T )
N, 1 2 3 4 5 6 7 '\9_ % 42y = 10

3x+4y=24
Fig 12.3

Minimum
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A, B and C are (0,5), (4,3) and (0,6) respectively. Now we evaluate Z = 200x + 500y
at these points.

Hence, minimum value of Z is 2300 attained at the point (4, 3)
Example 3 Solve the following problem graphically:

Minimise and Maximise Z = 3x + 9y . @
subject to the constraints: X + 3y <60 .. (2)
x+y>10 .. (3)

X<y )]

x=>0,y=>0 ... (5)

Solution First of all, let us graph the feasible region of the system of linear inequalities
(2) to (5). The feasible region ABCD is shown in the Fig 12.4. Note that the region is
bounded. The coordinates of the corner points A, B, C and D are (0, 10), (5, 5), (15,15)
and (0, 20) respectively.

Corner Corresponding value of
x A Point Z=3x+9y
A (0, 10) 90
B (5, 5) 60 &— Minimum
C (15, 15) 180 — Maximum
D (0, 20) 180 (Multiple
optimal
(0’;0,)/; (60,0) solutions)

x+3y=60

Fig 12.4

We now find the minimum and maximum value of Z. From the table, we find that
the minimum value of Z is 60 at the point B (5, 5) of the feasible region.

The maximum value of Z on the feasible region occurs at the two corner points
C (15, 15) and D (0, 20) and it is 180 in each case.

Remark Observe that in the above example, the problem has multiple optimal solutions
at the corner points C and D, i.e. the both points produce same maximum value 180. In
such cases, you can see that every point on the line segment CD joining the two corner
points C and D also give the same maximum value. Same is also true in the case if the
two points produce same minimum value.
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Example 4 Determine graphically the minimum value of the objective function

Z =-50x + 20y .. (1)
subject to the constraints:
2Xx—y=>-5 .. (2)
3x+y=>3 .. (3)
2x -3y <12 .. (4)
x=20,y=>0 ... (5)

Solution First of all, let us graph the feasible region of the system of inequalities (2) to
(5). The feasible region (shaded) is shown in the Fig 12.5. Observe that the feasible
region is unbounded.

We now evaluate Z at the corner points.

Corner Point | Z =~ 50x + 20y

(0,5) 100

Ny (0,3) 60
(1,0) -50
(6,0) —300 €— [smallest

Y ,'x7 8910 X
¥ (6,0)
3x+y=3
Fig 12.5

From this table, we find that — 300 is the smallest value of Z at the corner point
(6, 0). Can we say that minimum value of Z is — 300? Note that if the region would
have been bounded, this smallest value of Z is the minimum value of Z (Theorem 2).
But here we see that the feasible region is unbounded. Therefore, — 300 may or may
not be the minimum value of Z. To decide this issue, we graph the inequality

—50x + 20y < — 300 (see Step 3(ii) of corner Point Method.)
ie., -5x+2y<-30
and check whether the resulting open half plane has points in common with feasible

region or not. If it has common points, then =300 will not be the minimum value of Z.
Otherwise, =300 will be the minimum value of Z.



LINEAR PROGRAMMING 513

As shown in the Fig 12.5, it has common points. Therefore, Z = -50 x + 20 y
has no minimum value subject to the given constraints.

In the above example, can you say whether z = — 50 x + 20 y has the maximum
value 100 at (0,5)? For this, check whether the graph of — 50 x + 20 y > 100 has points
in common with the feasible region. (Why?)

Example 5 Minimise Z = 3x + 2y
subject to the constraints:

X+y=>8 .. (1)
3x+5y<15 . (2
x=20,y=0 . (3)

Solution Let us graph the inequalities (1) to (3) (Fig 12.6). Is there any feasible region?
Why is so0?

From Fig 12.6, you can see that
there is no point satisfying all the
constraints simultaneously. Thus, the
problem is having no feasible region and
hence no feasible solution.

Remarks From the examples which we
have discussed so far, we notice some
general features of linear programming
problems:

(i) The feasible region is always a
convex region.

(i) The maximum (or minimum)
solution of the objective function occurs at the vertex (corner) of the feasible
region. If two corner points produce the same maximum (or minimum) value
of the objective function, then every point on the line segment joining these
points will also give the same maximum (or minimum) value.

Fig 12.6

EXERCISE 12.1|

Solve the following Linear Programming Problems graphically:
1. Maximise Z = 3x + 4y

subject to the constraints : x +y <4,x > 0,y >0.
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2. MinimiseZ=-3x+4y
subjecttox +2y <8,3x+2y<12, x 2 0,y >0.
3. Maximise Z = 5x+ 3y
subjectto 3x + by <15,5x +2y <10,x >0,y >0.
4. Minimise Z = 3x + b5y
suchthatx+3y >3, x+y >2,x,y2>0.
5. Maximise Z = 3x+ 2y
subjectto x +2y<10,3x +y <15, x, y > 0.
6. Minimise Z=x+2y
subjectto 2x +y>3,x+2y >6,x,y >0.
Show that the minimum of Z occurs at more than two points.
7. Minimise and Maximise Z=5x +10y
subjectto x + 2y <120, x+y>60,x—-2y>0,x,y>0.
8. Minimise and Maximise Z =x + 2y
subjecttox + 2y > 100, 2x —y <0, 2x +y <200; X,y > 0.
9. Maximise Z =—x + 2y, subject to the constraints:
X223, X+y=25x+2y=6,y=>0.
10. Maximise Z=x +vy, subjecttox-y<-1,—x+y< 0, X,y =0.

12.3 Different Types of LinearProgramming Problems
A few important linear programming problems are listed below:

1. Manufacturing problems In these problems, we determine the number of units
of different products which should be produced and sold by a firm
when each product requires a fixed manpower, machine hours, labour hour per
unit of product, warehouse space per unit of the output etc., in order to make
maximum profit.

2. Diet problems In these problems, we determine the amount of different kinds
of constituents/nutrients which should be included in a diet so as to minimise the
cost of the desired diet such that it contains a certain minimum amount of each
constituent/nutrients.

3. Transportation problems In these problems, we determine a transportation
schedule in order to find the cheapest way of transporting a product from
plants/factories situated at different locations to different markets.
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Let us now solve some of these types of linear programming problems:

Example 6 (Diet problem): A dietician wishes to mix two types of foods in such a
way that vitamin contents of the mixture contain atleast 8 units of vitamin A and 10
units of vitamin C. Food ‘I’ contains 2 units/kg of vitamin Aand 1 unit/kg of vitamin C.
Food ‘II’ contains 1 unit/kg of vitamin A and 2 units/kg of vitamin C. It costs
Rs 50 per kg to purchase Food ‘I’ and Rs 70 per kg to purchase Food ‘II’. Formulate
this problem as a linear programming problem to minimise the cost of such a mixture.

Solution Let the mixture contain x kg of Food ‘I’ and y kg of Food ‘II’. Clearly, x > 0,
y > 0. We make the following table from the given data:

Resources Food Requirement
I I

)
Vitamin A 2 1 8
(units/kg)
Vitamin C 1 2 10
(units/kg)
Cost (Rs/kg) | 50 70

Since the mixture must contain at least 8 units of vitamin A and 10 units of
vitamin C, we have the constraints:

2X +y=>8
X+ 2y >10
Total cost Z of purchasing x kg of food ‘I’and y kg of Food ‘11’ is
Z =50x + 70y
Hence, the mathematical formulation of the problem is:
Minimise Z =50x + 70y .. (1)
subject to the constraints:
2x+y>8 - (2
X+ 2y>10 .. (3)
X,y >0 .. (4)

Let us graph the inequalities (2) to (4). The feasible region determined by the
system is shown in the Fig 12.7. Here again, observe that the feasible region is
unbounded.
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Let us evaluate Z at the corner points A(0,8), B(2,4) and C(10,0).

Y
N
121
r@b %5 101
w\J»% . —
g 5 A(0,8) Cor(ner)Pomt Z = 50x + 70y
. 08 560
(2:4) 380 &— |Minimum
(10,0) 500
X
2x+y=8
Fig12.7

In the table, we find that smallest value of Z is 380 at the point (2,4). Can we say
that the minimum value of Z is 380? Remember that the feasible region is unbounded.
Therefore, we have to draw the graph of the inequality

50x + 70y < 380 i.6., 5x+7y<38

to check whether the resulting open half plane has any point common with the feasible
region. From the Fig 12.7, we see that it has no points in common.

Thus, the minimum value of Z is380 attained at the point (2, 4). Hence, the optimal
mixing strategy for the dietician would be to mix 2 kg of Food ‘I’ and 4 kg of Food ‘II’,
and with this strategy, the minimum cost of the mixture will be Rs 380.

Example 7 (Allocation problem) A cooperative society of farmers has 50 hectare
of land to grow two crops X and Y. The profit from crops X and Y per hectare are
estimated as Rs 10,500 and Rs 9,000 respectively. To control weeds, a liquid herbicide
has to be used for crops X and Y at rates of 20 litres and 10 litres per hectare. Further,
no more than 800 litres of herbicide should be used in order to protect fish and wild life
using a pond which collects drainage from this land. How much land should be allocated
to each crop so as to maximise the total profit of the society?

Solution Letx hectare of land be allocated to crop X and y hectare to crop Y. Obviously,
x=0,y>0.

Profit per hectare on crop X = Rs 10500

Profit per hectare on crop Y = Rs 9000

Therefore, total profit Rs (10500x + 9000y)
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The mathematical formulation of the problem is as follows:

Maximise Z = 10500 x + 9000y
subject to the constraints:
x+y <50 (constraint related to land) .. (1)
20x + 10y < 800 (constraint related to use of herbicide)
ie. 2x +y <80 .. (2)
x=20,y=>0 (non negative constraint) .. (3

Let us draw the graph of the system of inequalities (1) to (3). The feasible region
OABC is shown (shaded) in the Fig 12.8. Observe that the feasible region is bounded.
The coordinates of the corner points O, A, B and C are (0, 0), (40, 0), (30, 20) and

(0, 50) respectively. Let us evaluate the objective function'Z = 10500 x + 9000y at
these vertices to find which one gives the maximum profit.

Corner Point | Z = 10500x + 9000y
0(0,0) 0
A(40,0) 420000
B (30, 20) 495000 <— [Maximum
C(0,50) 450000
x+y=50
Fig 12.8

Hence, the society will get the maximum profit of Rs 4,95,000 by allocating 30
hectares for crop X and 20 hectares for crop Y.

Example 8 (Manufacturing problem) A manufacturing company makes two models
A and B of a product. Each piece of Model A requires 9 labour hours for fabricating
and 1 labour hour for finishing. Each piece of Model B requires 12 labour hours for
fabricating and 3 labour hours for finishing. For fabricating and finishing, the maximum
labour hours available are 180 and 30 respectively. The company makes a profit of
Rs 8000 on each piece of model Aand Rs 12000 on each piece of Model B. How many
pieces of Model Aand Model B should be manufactured per week to realise a maximum
profit? What is the maximum profit per week?
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Solution Suppose x is the number of pieces of Model A and y is the number of pieces
of Model B. Then

Total profit (in Rs) = 8000 x+ 12000 y

Let Z =8000 x+ 12000 y
We now have the following mathematical model for the given problem.
Maximise Z = 8000 x + 12000 y .. (1)

subject to the constraints:
9x + 12y <180 (Fabricating constraint)

ie. 33X + 4y <60 .. (2)
x+3y <30 (Finishing constraint) ~(3)
x=20,y>0 (non-negative constraint) .. (4)

The feasible region (shaded) OABC determined by the linear inequalities (2) to (4)
is shown in the Fig 12.9. Note that the feasible region is bounded.

3x + 4y = 6020

(30,0
A
X'¢ ; >X
0 o A\ T3
;l'{, 2000) x+3y=30
Fig 12.9

Let us evaluate the objective function Z at each corner point as shown below:

Corner Point Z =8000 x + 12000y

0(0,0) 0

A (20, 0) 160000

B (12, 6) 168000 €<— | Maximum

C (0, 10) 120000

We find that maximum value of Z is 1,68,000 at B (12, 6). Hence, the company
should produce 12 pieces of Model A and 6 pieces of Model B to realise maximum
profit and maximum profit then will be Rs 1,68,000.
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EXERCISE 12.2 |

Reshma wishes to mix two types of food P and Q in such a way that the vitamin
contents of the mixture contain at least 8 units of vitamin A and 11 units of
vitamin B. Food P costs Rs 60/kg and Food Q costs Rs 80/kg. Food P contains
3 units/kg of Vitamin A and 5 units / kg of Vitamin B while food Q contains
4 units/kg of Vitamin A and 2 units/kg of vitamin B. Determine the minimum cost
of the mixture.

One kind of cake requires 200g of flour and 25g of fat, and another kind of cake
requires 100g of flour and 50g of fat. Find the maximum number of cakes which
can be made from 5kg of flour and 1 kg of fat assuming that there is no shortage
of the other ingredients used in making the cakes.

A factory makes tennis rackets and cricket bats. A tennis racket takes 1.5 hours
of machine time and 3 hours of craftman’s time in its making while a cricket bat
takes 3 hour of machine time and 1 hour of craftman’s time. In a day, the factory
has the availability of not more than 42 hours of machine time and 24 hours of
craftsman’s time.

(i) What number of rackets and bats must be made if the factory is to work
at full capacity?

(i) If the profit on a racket and on a bat is Rs 20 and Rs 10 respectively, find
the maximum profit of the factory when it works at full capacity.

A manufacturer produces nuts and bolts. It takes 1 hour of work on machine A
and 3 hours on machine B to produce a package of nuts. It takes 3 hours on
machine Aand 1 hour on machine B to produce a package of bolts. He earns a
profit of Rs17.50 per package on nuts and Rs 7.00 per package on bolts. How
many packages of each should be produced each day so as to maximise his
profit, if he operates his machines for at the most 12 hours a day?

A factory manufactures two types of screws, A and B. Each type of screw
requires the use of two machines, an automatic and a hand operated. It takes
4 minutes on the automatic and 6 minutes on hand operated machines to
manufacture a package of screws A, while it takes 6 minutes on automatic and
3 minutes on the hand operated machines to manufacture a package of screws
B. Each machine is available for at the most 4 hours on any day. The manufacturer
can sell a package of screws A at a profit of Rs 7 and screws B at a profit of
Rs 10. Assuming that he can sell all the screws he manufactures, how many
packages of each type should the factory owner produce in a day in order to
maximise his profit? Determine the maximum profit.
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A cottage industry manufactures pedestal lamps and wooden shades, each
requiring the use of a grinding/cutting machine and a sprayer. It takes 2 hours on
grinding/cutting machine and 3 hours on the sprayer to manufacture a pedestal
lamp. It takes 1 hour on the grinding/cutting machine and 2 hours on the sprayer
to manufacture a shade. On any day, the sprayer is available for at the most 20
hours and the grinding/cutting machine for at the most 12 hours. The profit from
the sale of a lamp is Rs 5 and that from a shade is Rs 3. Assuming that the
manufacturer can sell all the lamps and shades that he produces, how should he
schedule his daily production in order to maximise his profit?

A company manufactures two types of novelty souvenirs made of plywood.
Souvenirs of type A require 5 minutes each for cutting and 10 minutes each for
assembling. Souvenirs of type B require 8 minutes each for cutting and 8 minutes
each for assembling. There are 3 hours 20 minutes available for cutting and 4
hours for assembling. The profit is Rs 5 each for type A and Rs 6 each for type
B souvenirs. How many souvenirs of each type should the company manufacture
in order to maximise the profit?

A merchant plans to sell two types of personal computers —a desktop model and
a portable model that will cost Rs 25000 and Rs 40000 respectively. He estimates
that the total monthly demand of computers will not exceed 250 units. Determine
the number of units of each type of computers which the merchant should stock
to get maximum profit if he does not want to invest more than Rs 70 lakhs and if
his profit on the desktop model is Rs 4500 and on portable model is Rs 5000.

Adiet is to contain at least 80 units of vitamin Aand 100 units of minerals. Two
foods F, and F, are available. Food F, costs Rs 4 per unit food and F, costs
Rs 6 per unit..One unit of food F, contains 3 units of vitamin A and 4 units of
minerals. One unit of food F, contains 6 units of vitamin A and 3 units of minerals.
Formulate this as a linear programming problem. Find the minimum cost for diet
that consists of mixture of these two foods and also meets the minimal nutritional
requirements.

There are two types of fertilisers F, and F,. F, consists of 10% nitrogen and 6%
phosphoric acid and F, consists of 5% nitrogen and 10% phosphoric acid. After
testing the soil conditions, a farmer finds that she needs atleast 14 kg of nitrogen
and 14 kg of phosphoric acid for her crop. If F, costs Rs 6/kg and F, costs
Rs 5/kg, determine how much of each type of fertiliser should be used so that
nutrient requirements are met at a minimum cost. What is the minimum cost?

The corner points of the feasible region determined by the following system of
linear inequalities:

2x+y <10, x +3y <15, %, y=>0 are (0, 0), (5 0), (3, 4) and (0, 5). Let
Z = px + qy, where p, g > 0. Condition on p and q so that the maximum of Z
occurs at both (3, 4) and (0, 5) is

(A) p=q (B) p=2q (C) p=3¢q (D) q=3p
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Miscellaneous Examples

Example 9 (Diet problem) A dietician has to develop a special diet using two foods
P and Q. Each packet (containing 30 g) of food P contains 12 units of calcium, 4 units
of iron, 6 units of cholesterol and 6 units of vitamin A. Each packet of the same quantity
of food Q contains 3 units of calcium, 20 units of iron, 4 units of cholesterol and 3 units
of vitamin A. The diet requires atleast 240 units of calcium, atleast 460 units of iron and
at most 300 units of cholesterol. How many packets of each food should be used to
minimise the amount of vitamin Aiin the diet? What is the minimum amount of vitamin A?

Solution Let x and y be the number of packets of food Pand Q respectively. Obviously
x>0, y>0. Mathematical formulation of the given problem is as follows:

Minimise Z = 6x + 3y (vitamin A)

subject to the constraints

12x + 3y =240 (constraint on calcium), I.e. 4x +y >80 )]
4x + 20y >460 (constraint on'iron), i.e. X + 5y > 115 .. (2)
6x + 4y <300 (constraint on cholesterol), i.e. 3x + 2y < 150 .. (3)
x=0,y2>0 .. (4)

Let us graph the inequalities (1) to (4).

The feasible region (shaded) determined by the constraints (1) to (4) is shown in
Fig 12.10 and note that it is bounded.

x+5y=115

+ =
dx+y =80 3x+2y=150

Fig 12.10



522 MATHEMATICS

The coordinates of the corner points L, M and N are (2, 72), (15, 20) and (40, 15)
respectively. Let us evaluate Z at these points:

Corner Point Z=6x+3y

(2,72) 228

(15, 20) 150 < Minimum
(40, 15) 285

From the table, we find that Z is minimum at the point (15, 20). Hence, the amount
of vitamin A under the constraints given in the problem will be minimum, if 15 packets
of food P and 20 packets of food Q are used in the special diet. The minimum amount
of vitamin A will be 150 units.

Example 10 (Manufacturing problem) A manufacturer has three machines I, 11
and Il installed in his factory. Machines I-and Il are capable of being operated for
at most 12 hours whereas machine 111 must be operated for atleast 5 hours a day. She
produces only two items M and N each requiring the use of all the three machines.

The number of hours required for producing 1 unit of each of M and N on the three
machines are given in the following table:

Items | Number of hours required on machines

I I "
M 1 2 1
N 2 1 1.25
She makes a profit of Rs 600 and Rs 400 on items M and N respectively. How many

of each item should she produce so as to maximise her profit assuming that she can sell
all the items that she produced? What will be the maximum profit?

Solution Let x andy be the number of items M and N respectively.
Total profit on the production = Rs (600x + 400 y)

Mathematical formulation of the given problem is as follows:
Maximise Z =600 x + 400 y

subject to the constraints:

X + 2y < 12 (constraint on Machine I) . (1)
2x +y <12 (constraint on Machine I1) .. (2)

5
X+ 2 > 5 (constraint on Machine 111) .. (3

x>0, y20 .. (4)
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Let us draw the graph of constraints (1) to (4). ABCDE is the feasible region
(shaded) as shown in Fig 12.11 determined by the constraints (1) to (4). Observe that
the feasible region is bounded, coordinates of the corner points A, B, C, D and E are

(5,0) (6, 0), (4, 4), (0, 6) and (0, 4) respectively.

Fig 12.11

Let us evaluate Z = 600 x + 400 y at these corner points.

Corner point | Z=600x + 400y
(5,0) 3000
(6,0) 3600
4,4) 4000 €— | Maximum
(0, 6) 2400
(0, 4) 1600

We see that the point (4, 4) is giving the maximum value of Z. Hence, the
manufacturer has to produce 4 units of each item to get the maximum profit of Rs 4000.

Example 11 (Transportation problem) There are two factories located one at
place P and the other at place Q. From these locations, a certain commodity is to be
delivered to each of the three depots situated at A, B and C. The weekly requirements
of the depots are respectively 5, 5 and 4 units of the commodity while the production
capacity of the factories at P and Q are respectively 8 and 6 units. The cost of
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transportation per unit is given below:

From/To Cost (in Rs)
A B c
P 160 100 150
Q 100 | 120 | 100

How many units should be transported from each factory to each depot in order that
the transportation cost is minimum. What will be the minimum transportation cost?
Solution The problem can be explained diagrammatically as follows (Fig 12.12):

Let x units and y units of the commodity be transported from the factory at P to
the depots at Aand B respectively. Then (8 — x — y) units will be transported to depot
at C (Why?) Factory

Factory

Fig 12.12
Hence, we have x=20,y>0 and 8-x-y=0
i.e. x>20,y>0 and x+y<8

Now, the weekly requirement of the depot at A is 5 units of the commodity. Since
X units are transported from the factory at P, the remaining (5 — x) units need to be
transported from the factory at Q. Obviously, 5— x>0, i.e. x <5.

Similarly, (5-y)and 6 — (5—x+5-y) =x+y —4 units are to be transported from
the factory at Q to the depots at B and C respectively.
Thus, 5-y>20, x+y-42>0
i.e. y<5,x+y> 4
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Total transportation cost Z is given by
Z=160x+100y+100(5-x)+120(5-y)+100 (x +y—4) + 150 (8 —x —)
=10 (x— 7y + 190)

3
Therefore, the problem reduces to '\' x'=P 5
Minimise Z =10 (x — 7y + 190) 8
subject to the constraints: N y 5)
X>0,y>0 . (1) ‘\Bma >y=>5
X+y<8 .. (2) A, 4))’ \ D(5,3)
X<5 .. 3) 24 (5,0
yss L@ >\
and xryz4 .6 XS0 2/‘\ \
The shaded region ABCDEF V' F(4,0) 4 x+y=8
represented by the constraints (1) to
(5) is the feasible region (Fig 12.13). Fig 12.13

Observe that the feasible region is bounded. The coordinates of the corner points
of the feasible region are (0, 4), (0, 5), (3, 5), (5, 3), (5, 0) and (4, 0).
Let us evaluate Z at these points.

Corner Point | Z=10 (x =7y +190)
0, 4) 1620
(0, 5) 1550 <«— Minimum
(3,5) 1580
(5,3) 1740
(5,0) 1950
4,0) 1940

From the table, we see that the minimum value of Z is 1550 at the point (0, 5).

Hence, the optimal transportation strategy will be to deliver 0, 5 and 3 units from
the factory at P and 5, 0 and 1 units from the factory at Q to the depots at A, B and C
respectively. Corresponding to this strategy, the transportation cost would be minimum,
i.e., Rs 1550.

Miscellaneous Exercise on Chapter 12

1. Referto Example 9. How many packets of each food should be used to maximise
the amount of vitamin A in the diet? What is the maximum amount of vitamin A
in the diet?
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A farmer mixes two brands P and Q of cattle feed. Brand P, costing Rs 250 per
bag, contains 3 units of nutritional element A, 2.5 units of element B and 2 units
of element C. Brand Q costing Rs 200 per bag contains 1.5 units of nutritional
element A, 11.25 units of element B, and 3 units of element C. The minimum
requirements of nutrients A, B and C are 18 units, 45 units and 24 units respectively.
Determine the number of bags of each brand which should be mixed in order to
produce a mixture having a minimum cost per bag? What is the minimum cost of
the mixture per bag?

A dietician wishes to mix together two kinds of food X and Y in such a way that

the mixture contains at least 10 units of vitamin A, 12 units of vitamin B and
8 units of vitamin C. The vitamin contents of one kg food is given below:

Food Vitamin A| Vitamin B | Vitamin C
X 1 2 3
Y 2 2 1

One kg of food X costs Rs 16 and one kg of food Y costs Rs 20. Find the least
cost of the mixture which will produce the required diet?

A manufacturer makes two types of toys A and B. Three machines are needed
for this purpose and the time (in minutes) required for each toy on the machines
is given below:

Types of Toys Machines
| 1 Il
A 12 | 18 6
B 6 0 9

Each machine is available for a maximum of 6 hours per day. If the profit on
each toy of type Ais Rs 7.50 and that on each toy of type B is Rs 5, show that 15
toys of type Aand 30 of type B should be manufactured in a day to get maximum
profit.

An aeroplane can carry a maximum of 200 passengers. A profit of Rs 1000 is
made on each executive class ticket and a profit of Rs 600 is made on each
economy class ticket. The airline reserves at least 20 seats for executive class.
However, at least 4 times as many passengers prefer to travel by economy class
than by the executive class. Determine how many tickets of each type must be
sold in order to maximise the profit for the airline. What is the maximum profit?



LINEAR PROGRAMMING 527

6. Two godowns A and B have grain capacity of 100 quintals and 50 quintals
respectively. They supply to 3 ration shops, D, E and F whose requirements are
60, 50 and 40 quintals respectively. The cost of transportation per quintal from
the godowns to the shops are given in the following table:

Transportation cost per quintal (in Rs)
From/To A B
D 6 4
E 3 2
F 2.50 3

How should the supplies be transported in order that the transportation cost is
minimum? What is the minimum cost?

7. An oil company has two depots A and B with capacities of 7000 L and 4000 L
respectively. The company is to supply oil to three petrol pumps, D, E and F
whose requirements are 4500L, 3000L and 3500L respectively. The distances
(in km) between the depots and the petrol pumps is given in the following table:

Distance in (km.)
From / To A B
D 7 3
E 6 4
F 3 2

Assuming that the transportation cost of 10 litres of oil is Re 1 per km, how
should the delivery be scheduled in order that the transportation cost is minimum?
What is the minimum cost?

8. Afruitgrower can use two types of fertilizer in his garden, brand P and brand Q.
The amounts (in kg) of nitrogen, phosphoric acid, potash, and chlorine in a bag of
each brand are given in the table. Tests indicate that the garden needs at least
240 kg of phosphoric acid, at least 270 kg of potash and at most 310 kg of
chlorine.

If the grower wants to minimise the amount of nitrogen added to the garden,
how many bags of each brand should be used? What is the minimum amount of
nitrogen added in the garden?
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kg per bag
Brand P | Brand Q
Nitrogen 3 3.5
Phosphoric acid 1 2
Potash 3 1.5
Chlorine 1.5 2

Refer to Question 8. If the grower wants to maximise the amount of nitrogen
added to the garden, how many bags of each brand should be added? What is
the maximum amount of nitrogen added?

A toy company manufactures two types of dolls, A and B. Market tests and available
resources have indicated that the combined production level should not exceed 1200
dolls per week and the demand for dolls of type B is at most half of that for dolls of
type A. Further, the production level of dolls of type A can exceed three times the
production of dolls of other type by at most 600 units. If the company makes profit of
Rs 12 and Rs 16 per doll respectively on dolls A and B, how many of each should be
produced weekly in order to maximise the profit?

Summary

A linear programming problem is one that is concerned with finding the optimal
value (maximum or minimum) of a linear function of several variables (called
objective function) subject to the conditions that the variables are
non-negative and satisfy a set of linear inequalities (called linear constraints).
Variables are sometimes called decision variables and are non-negative.

A few important linear programming problems are:
(i) Dietproblems
(iiy Manufacturing problems
(i) Transportation problems
The common region determined by all the constraints including the non-negative

constraints x>0, y> 0 of a linear programming problem is called the feasible
region (or solution region) for the problem.

Points within and on the boundary of the feasible region represent feasible
solutions of the constraints.

Any point outside the feasible region is an infeasible solution.
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Any point in the feasible region that gives the optimal value (maximum or
minimum) of the objective function is called an optimal solution.

The following Theorems are fundamental in solving linear programming
problems:

Theorem 1 Let R be the feasible region (convex polygon) for a linear
programming problem and let Z = ax + by be the objective function. When Z
has an optimal value (maximum or minimum), where the variables x and y
are subject to constraints described by linear inequalities, this optimal value
must occur at a corner point (vertex) of the feasible region.

Theorem 2 Let R be the feasible region for a linear programming problem,
and let Z = ax + by be the objective function. If R is bounded, then the
objective function Z has both a maximum and aminimum value on R and
each of these occurs at a corner point (vertex) of R.

If the feasible region is unbounded, then a maximum or a minimum may not
exist. However, if it exists, it must occur at a corner point of R.

Corner point method for solving a linear programming problem. The method
comprises of the following steps:
(i) Find the feasible region of the linear programming problem and determine
its corner points (vertices).
(i) Evaluate the objective function Z = ax +by at each corner point. Let M
and m respectively be the largest and smallest values at these points.
(i) If the feasible region is bounded, M and mrespectively are the maximum
and minimum values of the objective function.
If the feasible region is unbounded, then

(i) M isthe maximum value of the objective function, if the open half plane
determined by ax + by > M has no point in common with the feasible
region. Otherwise, the objective function has no maximum value.

(i) m is the minimum value of the objective function, if the open half plane
determined by ax + by < m has no point in common with the feasible
region. Otherwise, the objective function has no minimum value.

If two corner points of the feasible region are both optimal solutions of the
same type, i.e., both produce the same maximum or minimum, then any point
on the line segment joining these two points is also an optimal solution of the
same type.
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Historical Note

In the World War 11, when the war operations had to be planned to economise
expenditure, maximise damage to the enemy, linear programming problems
came to the forefront.

The first problem in linear programming was formulated in 1941 by the Russian
mathematician, L. Kantorovich and the American economist, F. L. Hitchcock,
both of whom worked at it independently of each other. This was the well
known transportation problem. In 1945, an English economist, GStigler,
described yet another linear programming problem — that of determining an
optimal diet.

In 1947, the American economist, G. B. Dantzig suggested an efficient method
known as the simplex method which is an iterative procedure to solve any
linear programming problem in a finite number of steps.

L. Katorovich and American mathematical economist, T. C. Koopmans were
awarded the nobel prize in the year 1975 in economics for their pioneering
work in linear programming. With the advent of computers and the necessary
softwares, it has become possible to apply linear programming model to
increasingly complex problems in many areas.

—_— o —



Chapter 13
(PROBABILITY)

& The theory of probabilities is simply the Science of logic
quantitatively treated. — C.S. PEIRCE

13.1 Introduction

In earlier Classes, we have studied the probability as a
measure of uncertainty of events in a random experiment.
We discussed the axiomatic approach formulated by
Russian Mathematician, A.N. Kolmogorov (1903-1987)
and treated probability as a function of outcomes of the
experiment. We have also established equivalence between
the axiomatic theory and the classical theory of probability
in case of equally likely outcomes. On the basis of this
relationship, we obtained probabilities of events associated
with discrete sample spaces. We have also studied the
addition rule of probability. In this chapter, we shall discuss
the important concept of conditional probability of an event

given that another event has occurred, which will be helpful Fef
in understanding the Bayes' theorem, multiplication rule of Pierre de Fermat
probability and independence of events. We shall also learn (1601-1665)

an important concept of random variable and its probability

distribution and also the mean and variance of a probability distribution. In the last
section of the chapter, we shall study an important discrete probability distribution
called Binomial distribution. Throughout this chapter, we shall take up the experiments
having equally likely outcomes, unless stated otherwise.

13.2 Conditional Probability

Uptill now in probability, we have discussed the methods of finding the probability of
events. If we have two events from the same sample space, does the information
about the occurrence of one of the events affect the probability of the other event? Let
us try to answer this question by taking up a random experiment in which the outcomes
are equally likely to occur.

Consider the experiment of tossing three fair coins. The sample space of the
experiment is

S = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}
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1
Since the coins are fair, we can assign the probability g to each sample point. Let

E be the event ‘at least two heads appear’ and F be the event ‘first coin shows tail’.
Then
E = {HHH, HHT, HTH, THH}

and F = {THH, THT, TTH, TTT}
Therefore ~ P(E) =P ({HHH}) + P ({HHT}) + P ({HTH}) + P ({THH})
1 1
573552 (Vv
and P(F) =P ({THH}) + P ({THT}) + P ({TTH}) + P ({TTT})
11111
= —t—+—+—=—
8 8 8 8 2
Also En F= {THH}

with  P(EA F)=P({THH}) = %

Now, suppose we are given that the first coin shows tail, i.e. F occurs, then what is
the probability of occurrence of E? With the information of occurrence of F, we are
sure that the cases in which first coin does not result into a tail should not be considered
while finding the probability of E. This information reduces our sample space from the
set S to its subset F for the event E. In other words, the additional information really
amounts to telling us that the situation may be considered as being that of a new
random experiment for which the sample space consists of all those outcomes only
which are favourable to the occurrence of the event F.

Now, the sample point of F which is favourable to event E is THH.
Thus, Probability of E considering F as the sample space = i,

1
or Probability of E given that the event F has occurred = —

4
This probability of the event E is called the conditional probability of E given

that F has already occurred, and is denoted by P (E|F).

1
Thus P(EJF) = Z

Note that the elements of F which favour the event E are the common elements of
E and F, i.e. the sample points of E N F.
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Thus, we can also write the conditional probability of E given that F has occurred as

Number of elementaryeventsfavourableto ENF

PEF) = Number of elementary events which are favourable to F
n(ENF)
n(F)
Dividing the numerator and the denominator by total number of elementary events
of the sample space, we see that P(E|F) can also be written as

n(ENF)
n(s P(ENF

P(EJF) = ﬁ - (P(;)) 80
n(s)

Note that (1) is valid only when P(F) # 0 i.e., F # ¢ (Why?)
Thus, we can define the conditional probability as follows :

Definition 1 If E and F are two events associated with the same sample space of a
random experiment, the conditional probability of the event E given that F has occurred,
i.e. P (E|F) is given by

P(EIF) = P(E NF)

provided P(F) #0

13.2.1 Properties of conditional preobability

Let E and F be events of a sample space S of an experiment, then we have
Property 1 P(S|F)=P(F|F) =1

We know that

P(SNF) _ P(F) 1

PO T5Em TR
P(FNF) P
Also P(F|F) = (P(_flz)):P_((g:l
Thus P(S|F) =P(F[F) = 1

Property 2 If A and B are any two events of a sample space S and F is an event
of S such that P(F) # 0, then

P((A U B)|F) =P(A|F) + P(BJF) — P((A n B)|F)
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In particular, if A and B are disjoint events, then
P((AUB)|F) = P(AJF) + P(BJF)

We have

P[(AUB)NF]

P((AUB)[F) = P(F)

P[(ANnF) U (BNF)]
P(F)
(by distributive law of union of sets over intersection)
P(ANnF)+PBNF)-P(AnB NF)
P(F)

P(AnF) P(BNF) P[(AnB) nF]
P(F)  P(F) P(F)
=P(A|F) + P(BJF) — P((AnB)|F)
When A and B are disjoint events, then
P(AnB)F)=0
= P ((A U B)|F) =P(A|F) + P (B|F)
Property 3 P(E’'[F) =1 — P(E[F)
From Property 1, we know that P (S|F) = 1

= P(EUEJF) =1 since S=EUE’
= P(EIF) + P (E'[F)=1 since E and E” are disjoint events
Thus, P(E'[F) =1 — P(E[F)

Let us now take up some examples.

7 9 4
Example L If P (A) = B, P(B)= 77 andP(A N B) = E, evaluate P (A|B).

13
4
Solution We have P(A]B):m:ﬁzi
PB 9 9
13

Example 2 A family has two children. What is the probability that both the children are
boys given that at least one of them is a boy ?
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Solution Let b stand for boy and g for girl. The sample space of the experiment is
S=1{(b, b), (g, b), (b, 9), (9, 9)}

Let E and F denote the following events :
E : ‘both the children are boys’
F : ‘at least one of the child is a boy’

Then E = {(b,b)} and F = {(b,b), (g,b), (b,0)}
Now E N F={(b,b)}
Thus P(F)=%andP(E mF)—%
1
Therefore P (E[F) = M: . 1
P(F) 3 3
4

Example 3 Ten cards numbered 1 to 10 are placed in a box, mixed up thoroughly and
then one card is drawn randomly. If it is known that the number on the drawn card is
more than 3, what is the probability that it is an even number?

Solution Let A be the event ‘the number on the card drawn is even’ and B be the
event ‘the number on the card drawn is greater than 3°. We have to find P(A|B).

Now, the sample space of the experiment is S= {1, 2, 3,4,5,6,7,8,9, 10}

Then A=12,4,6,8,10}, B={4,5,6,7,8,9, 10}
and AN B= {4,6,8,10)
5 7 4
Al P(A)=—,P(B)=—and P(ANB)=—
50 (A) = 1 P(B) = gand P(ANB) =
4
P(ANB 4
Then P(AB) = P(ANB) 10 _4
PB T 7
10

Example 4 In a school, there are 1000 students, out of which 430 are girls. It is known
that out 0430, 10% of the girls study in class XII. What is the probability that a student
chosen randomly studies in Class XII given that the chosen student is a girl?

Solution Let E denote the event that a student chosen randomly studies in Class XII
and F be the event that the randomly chosen student is a girl. We have to find P (E|F).
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430 43

Now P(F)= —— =043 and P(E N F)=——=0.043 (Why?)
1000 1000
P(ENF) 0.043

Then PEF) = 5= 043 =0.1

Example 5 A die is thrown three times. Events A and B are defined as below:
A : 4 on the third throw
B : 6 on the first and 5 on the second throw

Find the probability of A given that B has already occurred.
Solution The sample space has 216 outcomes.
(1,1,4 (1,24) ..(1,64) (2,14) (22,4) ... 2.6,4)
Now A=43,1,4) (32,4 ..(3.06,4) 4,1,4 4,24 ...(4.64)
(5,1,4) 62,4 ... (5,6,4) (6,1,4) (6,2,4) ...(6,6,4)
B = {(6,5,1),(6.5,2),(6.,5,3),(6,5,4), (6,5,5), (6,5,6)}

and A N B={(6,54)}.
6 1
Now P(B)= —ad P(AnB)= —
216 216
»
P(AnB 1
Then  PAB) - =B 216 1
PB) 6 6

Example 6 A die is thrown twice and the sum of the numbers appearing is observed
to be 6. What is the conditional probability that the number 4 has appeared at least
once?

Solution Let E be the event that ‘number 4 appears at least once’ and F be the event
that “the sum of the numbers appearing is 6’.

Then, E=1{4,1),42),4.3),(44),4,5),(4,6),(1,4),(2,4),(3,4),(54),(6,4)}
and F={(1,5),(2,4),(3,3),(4,2), (5,1)}

11 5
We have P(E) = —and P(F) = —
36 36

Also EnF={(24),4.2)}
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2
Theref P(ENF) = —
erefore ( ) Y
Hence, the required probability
2
P(E NnF) 2
P(EF) = ———=30=12
P(F) > 5
36

For the conditional probability discussed above, we have considered the elemen-
tary events of the experiment to be equally likely and the corresponding definition of
the probability of an event was used. However, the same definition can also be used in
the general case where the elementary events of the sample space are not equally
likely, the probabilities P(E NF) and P (F) being calculated accordingly. Let us take up
the following example.

Example 7 Consider the experiment of tossing a coin. If the coin shows head, toss it

again but if it shows tail, then throw a die.” Find the (H,H)
conditional probability of the event that ‘the die shows Head (H) <
a number greater than 4” given that ‘there is at least < (H,T)
one tail’.
(T,1)
Solution The outcomes of the experiment can be (T,2)
represented in following diagrammatic manner called Tail (T) (1.3)
the ‘tree diagram’. g:g;
The sample space of the experiment may be (T,0)

. Fig 13.1
described as g

S ={(H.H), (H,T), (T.1), (T,2), (T.3), (T.4), (T.5), (T.6)}

where (H, H) denotes that both the tosses result into Vi

(H,H)
head and (T, i) denote the first toss result into a tail and Head (H) <
%) vy~ (H,T)

the number i appeared on the die for i = 1,2,3,4,5,6.

Thus, the probabilities assigned to the 8 elementary

events &
(H,H),(H, T), (T, 1),(T, 2), (T, 3)(T, 4), (T, 5), (T, 6)
111 1 1 1 11 . o

are T 1 2 1212 respectively which is

clear from the Fig 13.2.
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Let F be the event that ‘there is at least one tail’ and E be the event ‘the die shows
a number greater than 4°. Then
F={(H,T),(T.1),(T,2),(T.3),(T.4),(T.)5),(T,6)}
E = {(T,5),(T,6)} and E n F={(T,5), (T,6)}
Now P(F) =P({HT)}) + P((T,D}) + P ({(T.2)}) + P({(T.3)})
+ P ({(T4H}) + PH(T5)}) + PH(T.6)})
1 1 1 1 1 1 1 3

=—t—f—t—t—F—+—==
4 12 12 12 12 12 12 4

1 1 1
and PENF)=P({(T,5})+P ({(T,6)}) = E+E:g
1
Hence P(E[F) = %:%:%
4

|EXERCISE 131

1. Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and
P(E n F)=0.2, find P(E[F) and P(F|E)

2. Compute P(A|B), if P(B) = 0.5 and P (A N B)=0.32

3. If P(A)=0.8, P(B)=0.5and P(B|A) = 0.4, find

(i) P(A n B) (i) P(AB) (i) P(A UB)
. 5 2
4. Evaluate P(A U B), if 2P(A) =P(B) = E and P(A|B) = g
6 5 7
5 IfP(A)=— ,P(B)=—and P(A U B) =—, find
11 11 11
(i) P(ANB) (i) P(AB) (i) P(BJA)
Determine P(E|F) in Exercises 6 to 9.
6. A coin is tossed three times, where
(i) E :head on thirdtoss ,  F : heads on first two tosses
(i) E : atleast two heads , F : at most two heads

(iii) E:atmosttwo tails , F :atleast one tail
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Two coins are tossed once, where

E : tail appears on one coin, F : one coin shows head

E : no tail appears, F : no head appears

A die is thrown three times,

E : 4 appears on the third toss, F: 6 and 5 appears respectively
on first two tosses

Mother, father and son line up at random for a family picture

E : son on one end, F : father in middle

A black and a red dice are rolled.

(a) Find the conditional probability of obtaining a sum greater than 9, given
that the black die resulted in a 5.

(b) Find the conditional probability of obtaining the sum 8, given that the red die
resulted in a number less than 4.
A fair die is rolled. Consider events E= {1.3,5}, F={2,3} and G= {2,3,4,5}
Find
(i) P(E[F) and P(F|E) (i) P(E|G) and P(G[E)
@) P((Ev F)|G) and P((E m F)|G)
Assume that each born child is equally likely to be-a boy or a girl. If a family has
two children, what is the conditional probability that both are girls given that
(1) the youngest is a girl, (ii) at least one is a girl?
An instructor has a question bank consisting of 300 easy True / False questions,
200 difficult True / False questions, 500 easy multiple choice questions and 400
difficult multiple choice questions. If a question is selected at random from the
question bank, what is the probability that it will be an easy question given that it
is a multiple choice question?
Given that the two numbers appearing on throwing two dice are different. Find
the probability of the event ‘the sum of numbers on the dice is 4°.

Consider the experiment of throwing a die, if a multiple of 3 comes up, throw the
die again and if any other number comes, toss a coin. Find the conditional probability
of the event ‘the coin shows a tail’, given that ‘at least one die shows a 3’.

In each of the Exercises 16 and 17 choose the correct answer:

16.

1
If P(A) = E’ P (B) =0, then P(A|B) is

1
(A) 0 B) 3
(C) notdefined (D) 1
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17. If A and B are events such that P(A|B) = P(B|A), then
(A) AcBbutA#B (B) A=B
(C) AnB=¢ (D) P(A) = P(B)

13.3 Multiplication Theorem on Probability

Let E and F be two events associated with a sample space S. Clearly, the set E N F
denotes the event that both E and F have occurred. In other words, E n F denotes the
simultaneous occurrence of the events E and F. The event E N F is also written as EF.

Very often we need to find the probability of the event EF. For example, in the
experiment of drawing two cards one after the other, we may be interested in finding
the probability of the event ‘a king and a queen’. The probability of event EF is obtained
by using the conditional probability as obtained below :

We know that the conditional probability of event E given that F has occurred is
denoted by P(E|F) and is given by

NF
P(E|F) = P ,P(F)#0
From this result, we can write
P(En F)=P(F) . P(EF) (1)
Also, we know that
P(F NE
P(F|E) = %,P(E)io
P(ENF) .
or P(FIE) = P—(E) (sinceEN F=Fn E)
Thus, P(EN F)=P(E). P(FIE) e (2)

Combining (1) and (2), we find that
P(En F)=P(E) P(F|E)
= P(F) P(E|F) provided P(E) # 0 and P(F) # 0.
The above result is known as the multiplication rule of probability.
Let us now take up an example.

Example 8 Anurn contains 10 black and 5 white balls. Two balls are drawn from the

urn one after the other without replacement. What is the probability that both drawn
balls are black?

Solution Let E and F denote respectively the events that first and second ball drawn
are black. We have to find P(E n F) or P (EF).
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10
Now P(E) = P (black ball in first draw) = E

Also given that the first ball drawn is black, i.e., event E has occurred, now there
are 9 black balls and five white balls left in the urn. Therefore, the probability that the
second ball drawn is black, given that the ball in the first draw is black, is nothing but
the conditional probability of F given that E has occurred.

9
P(FIE) = —
ic (FIE) = —

By multiplication rule of probability, we have
P(E nF)=P(E) P(FE)

Multiplication rule of probability for more than two events If E, F and G are
three events of sample space, we have

P(EnF n G)=P(E) P(FIE)P(G|(E n F)) =P (E) P(FIE) P(GIEF)
Similarly, the multiplication rule of probability can be extended for four or
more events.

The following example illustrates the extension of multiplication rule of probability
for three events.

Example 9 Three cards are drawn successively, without replacement from a pack of
52 well shuftled cards. What is the probability that first two cards are kings and the
third card drawn is an ace?

Solution Let K denote the event that the card drawn is king and A be the event that
the card drawn is an ace. Clearly, we have to find P (KKA)

4
Now P(K) = 52
Also, P(K|K) is the probability of second king with the condition that one king has

already been drawn. Now there are three kings in (52 — 1) = 51 cards.

3
Therefore P(KIK) = E

Lastly, P(AJKK) is the probability of third drawn card to be an ace, with the condition
that two kings have already been drawn. Now there are four aces in left 50 cards.
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4
Therefore P(AIKK) = %

By multiplication law of probability, we have
P(KKA) =P(K) P(KK) P(AKK)
4 3 4 2
>< —

5251 50 5525

13.4 Independent Events

Consider the experiment of drawing a card from a deck of 52 playing cards, in which
the elementary events are assumed to be equally likely. If E and F denote the events
'the card drawn is a spade' and 'the card drawn is an ace' respectively, then

1

13 1 4
PO =5 RS

Also E and F is the event ' the card drawn is the ace of spades' so that

1
PENF) = =

P(ENF) 5
P(F)

1
Hence P(EJF) = =

|_|N|_.

1

W

1
Since P(E) = Z: P (E|F), we can say that the occurrence of event F has not

affected the probability of occurrence of the event E.
We also have

P(FE) = ————====—=P(F)

1
PENF) 35 1
P(E) 1 13
4

1
Again, P(F) = B P(F|E) shows that occurrence of event E has not affected

the probability of occurrence of the event F.

Thus, E and F are two events such that the probability of occurrence of one of
them is not affected by occurrence of the other.

Such events are called independent events.
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Definition 2 Two events E and F are said to be independent, if

and

P(FIE) =P (F) provided P (E) #0
P (E[F) =P (E) provided P (F) #0

Thus, in this definition we need to have P (E) # 0 and P(F)# 0
Now, by the multiplication rule of probability, we have

P(EN F)=P(E) . P (FE) (D

If E and F are independent, then (1) becomes

P(ENF)=P(E) . P(F) . (2)

Thus, using (2), the independence of two events is also defined as follows:

Definition 3 Let E and F be two events associated with the same random experiment,
then E and F are said to be independent if

P(En F)=P(E). P (F)

Remarks

(i)

(it)

(iii)

(iv)

Two events E and F are said to be dependent if they are not independent, i.e. if
PENF)#P(E).P(F)
Sometimes there is a confusion between independent events and mutually
exclusive events. Term ‘independent’ is defined in terms of “probability of events’
whereas mutually exclusive is defined in term of events (subset of sample space).
Moreover, mutually exclusive events never have an outcome common, but
independent events, may have common outcome. Clearly, ‘independent’ and
‘mutually exclusive’ do not have the same meaning.
In other words, two independent events having nonzero probabilities of occurrence
can not be mutually exclusive, and conversely, i.e. two mutually exclusive events
having nonzero probabilities of occurrence can not be independent.
Two experiments are said to be independent if for every pair of events E and F,
where E 1s associated with the first experiment and F with the second experiment,
the probability of the simultaneous occurrence of the events E and F when the
two experiments are performed is the product of P(E) and P(F) calculated
separately on the basis of two experiments, i.e., P (E n F) =P (E) . P(F)
Three events A, B and C are said to be mutually independent, if
P(An B)=P(A) P(B)

P(An C)=P(A) P(C)

PB N C)=P(B) P(C)
and P(AnBN C)=P(A)P(B) P(C)
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If at least one of the above is not true for three given events, we say that the
events are not independent.

Example 10 A die is thrown. If E is the event ‘the number appearing is a multiple of
3’ and F be the event ‘the number appearing is even’ then find whether E and F are
independent ?

Solution We know that the sample space is S = {1, 2, 3, 4, 5, 6}

Now E={3,6},F={2,4,6}and ENF= {6}
2 1 31 1
Th P(E)= —=—=, P(F)=—== and P(En F)=—
en (B) = 2=3 (F) ) EnF) S
Clearly P(E n F) =P(E). P (F)
Hence E and F are independent events.

Example 11 An unbiased die is thrown twice. Let the event A be ‘odd number on the
first throw’ and B the event ‘odd number on the second throw’. Check the independence
of the events A and B.

Solution If all the 36 elementary events of the experiment are considered to be equally
likely, we have

18 1 18 1
P(A) = 3277 and P(B)=—2==

36 2
Also P(A n B) = P (odd number on both throws)
9 1
36 4
N P(A) P(B) = lxl—l
o 272 4
Clearly P(A nB)=P(A) x P(B)
Thus, A and B are independent events

Example 12 Three coins are tossed simultaneously. Consider the event E ‘three heads
or three tails’, F ‘at least two heads’ and G ‘at most two heads’. Of the pairs (E,F),
(E,G) and (F,G), which are independent? which are dependent?
Solution The sample space of the experiment is given by

S = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}
Clearly E = {HHH, TTT}, F= {HHH, HHT, HTH, THH}
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G = {HHT, HTH, THH, HTT, THT, TTH, TTT}
ENF={HHH},ENG={TTT},Fn G={HHT, HTH, THH}

2 1 4 1 7
P(E) = §=Z,P(F)=§=E, P(G)=g

1 1 3
P(ENF) = 5 P(ENG) ==, PFNG) ==

1
X

P(E).P(F) = =—,P(E)-P(G) = x

NN e
N —
oo —
N |

(ool BN

1.7 7
P(F).P(G) = EXE_E

P(En F)=P(E) . P(F)
P(EN G)#P(E) . P(G)
P(Fn G)=P (F). P(G)

Hence, the events (E and F) are independent, and the events (E and G) and
(F and G) are dependent.

Example 13 Prove that if E and F are independent events, then so are the events

E and F'.

Solution Since E and F are independent, we have

P(ENF)=P(E). P(F) (1)
From the venn diagram in Fig 13.3, it is clear
that E N F and E N F "are mutually exclusive events E (E'NF’) S
and also E=(En E) U (ENF"). N «F
Therefore P(E)=P(ENnF)+PE N F)

or

P(ENF)=PE)-PEN F)

~p@®)-PE).PF) | FOF) ®AF)  (ENF)
(by (1)) Fig 13.3

=P(E) (1-P(F))

— P(E). P(F')

Hence, E and F’ are independent
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In a similar manner, it can be shown that if the events E and F are
independent, then

(a) E’andF are independent,

(b) E’and F’ are independent

Example 14 If A and B are two independent events, then the probability of occurrence

of at least one of A and B is given by 1- P(A") P(B")

Solution We have

P(at least one of A and B) = P(A U B)

=P(A) + P(B) = P(A N B)
=P(A) + P(B) — P(A) P(B)
= P(A) + P(B) [I=P(A)]
=P(A) + P(B). P(A")
=1- P(A’) + P(B) P(A)
= 1= P(A") [I- P(B)]
=1-P(A") P(B")

|[EXERCISE13.2]

3 1
1. If P(A) s and P (B) =3 find P (A m B) if A and B are independent events.

2. Two cards are drawn at random and without replacement from a pack of 52
playing cards. Find the probability that both the cards are black.

3. A box of oranges is inspected by examining three randomly selected oranges
drawn without replacement. If all the three oranges are good, the box is approved
for sale, otherwise, it is rejected. Find the probability that a box containing 15
oranges out of which 12 are good and 3 are bad ones will be approved for sale.

4. A fair coin and an unbiased die are tossed. Let A be the event ‘head appears on
the coin’ and B be the event ‘3 on the die’. Check whether A and B are
independent events or not.

5. A die marked 1, 2, 3 in red and 4, 5, 6 in green is tossed. Let A be the event,
‘the number is even,” and B be the event, ‘the number is red’. Are A and B
independent?

1

3 3
6. Let E and F be events with P (E) =g, P (F) :R) and P (E N F) = g Are

E and F independent?
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1 3
Given that the events A and B are such that P(A) = E, P(AuUB)= g and
P(B) =p. Find pif they are (i) mutually exclusive (ii) independent.
Let A and B be independent events with P(A) = 0.3 and P(B) = 0.4. Find

(i) P(A n B) (i) P(A U B)
(i) P(A|B) (iv) P(B|A)
1 1 1

If A and B are two events such that P(A) = Z, P(B)= 5 and P(AN B) =§,
find P (not A and not B).

NG

1 7
Events A and B are such that P (A) = > P(B)= o and P(not A or not B) =

State whether A and B are independent ?
Given two independent events A and B such that P(A) = 0.3, P(B) = 0.6.
Find
(i) P(A and B) (ii) P(A and not B)
(ii)) P(A or B) (iv) P(neither A nor B)
A die is tossed thrice. Find the probability of getting an odd number at least once.

Two balls are drawn at random with replacement from a box containing 10 black
and 8 red balls. Find the probability that

(1) bothballs are red.
(i) first ballis black and second is red.
(iii) one of them is black and other is red.
1

1
Probability of solving specific problem independently by A and B are 3 and 3

respectively. If both try to solve the problem independently, find the probability
that

(i) the problem is solved (ii) exactly one of them solves the problem.

One card is drawn at random from a well shuffled deck of 52 cards. In which of
the following cases are the events E and F independent ?

(1) E : ‘the card drawn is a spade’
F : ‘the card drawn is an ace’
(i) E : ‘the card drawn is black’
F : ‘the card drawn is a king’
(i) E: ‘the card drawn is a king or queen’
F : ‘the card drawn is a queen or jack’.
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16. Inahostel, 60% of the students read Hindi news paper, 40% read English news
paper and 20% read both Hindi and English news papers. A student is selected
at random.

(a) Find the probability that she reads neither Hindi nor English news papers.
(b) If she reads Hindi news paper, find the probability that she reads English
news paper.

(c) If she reads English news paper, find the probability that she reads Hindi
news paper.

Choose the correct answer in Exercises 17 and 18.

17. The probability of obtaining an even prime number on each die, when a pair of
dice isrolled is

1 1 1

(A) 0 (B) 3 ©), 13 (D) 35
18. Two events A and B will be independent, if

(A) A and B are mutually exclusive

(B) P(AB") =[1 - P(A)] [1 - P(B)]

(C) P(A) = P(B)

(D) P(A)+P(B) =1
13.5 Bayes' Theorem

Consider that there are two bags I and II. Bag I contains 2 white and 3 red balls and
Bag II contains 4 white and 5 red balls. One ball is drawn at random from one of the

1
bags. We can find the probability of selecting any of the bags (i.e. 5) or probability of

drawing a ball of a particular colour (say white) from a particular bag (say Bag I). In
other words, we can find the probability that the ball drawn is of a particular colour, if
we are given the bag from which the ball is drawn. But, can we find the probability that
the ball drawn is from a particular bag (say Bag II), if the colour of the ball drawn is

given? Here, we have to find the reverse probability of Bag II to be selected when an
event occurred after it is known. Famous mathematician, John Bayes' solved the problem
of finding reverse probability by using conditional probability. The formula developed
by him is known as ‘Bayes theorem’ which was published posthumously in 1763.
Before stating and proving the Bayes' theorem, let us first take up a definition and
some preliminary results.

13.5.1 Partition of a sample space

A setofevents E, E,, ..., E_is said to represent a partition of the sample space S if
(@ ENE=¢,i#}i,j=123.,n
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(b) ELVE, U ... UE=Sand
(c) P(E)>0foralli=1,2,..,n.
In other words, the events E, E,, ..., E_ represent a partition of the sample space
S if they are pairwise disjoint, exhaustive and have nonzero probabilities.
As an example, we see that any nonempty event E and its complement E’ form a
partition of the sample space S since they satisfy ENE =¢dand Eu E' =S.

From the Venn diagram in Fig 13.3, one can easily observe that if E and F are any
two events associated with a sample space S, thenthe set {ENF,ENFE NnEE NF’}
is a partition of the sample space S. It may be mentioned that the partition of a sample
space is not unique. There can be several partitions of the same sample space.

We shall now prove a theorem known as Theorem of total probability.

13.5.2 Theorem of total probability

Let {E,E,....E } be apartition of the sample space S, and suppose that each of the
events E|, E,...., E_ has nonzero probability of occurrence. Let A be any event associated
with S, then

P(A) =P(E,) P(A[E,) + P(E) P(A[E,) + ... + P(E ) P(A[E)
= Y P(E;)P(AE))
j=1

Proof GiventhatE , E ..., E isa partition of the sample space S (Fig 13.4). Therefore,
S=E UVUEU..UE S .. (1)

and EimEj:(]),i;tj,i,j:1,2,...,n
Now, we know that for any event A,
A=ANS
=ANE VE v.. VE)
=(ANE)UANE)U..UANE) Fig 13.4

AlsoANE, andA N Ej are respectively the subsets of E, and EJ.. We know that
E and Ej are disjoint, for 1 # J, therefore, A NE and A N EJ are also disjoint for all
iz, j=12,..,n
Thus, P(A) =P[(ANE)U(ANE)u..UANE)]
=PANE)+P(ANE)+..+P(ANE)
Now, by multiplication rule of probability, we have
P(ANE)=PE)PAIE)as P(E)# O0Vi=12,.,n
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Therefore, P (A)=P (E) P (A[E) + P (E) P (AJE) + ... + P (E)P(AE )

or P(A) = ZP(E,-)P(A|E])
i

Example 15 A person has undertaken a construction job. The probabilities are 0.65
that there will be strike, 0.80 that the construction job will be completed on time if there
is no strike, and 0.32 that the construction job will be completed on time if there is a
strike. Determine the probability that the construction job will be completed on time.

Solution Let A be the event that the construction job will be completed on time, and B
be the event that there will be a strike. We have to find P(A).
We have
P(B) = 0.65, P(no strike) = P(B") =1 —P(B) =1 —0.65 = 0.35
P(AB) = 0.32, P(A|B") = 0.80
Since events B and B’ form a partition of the sample space S, therefore, by theorem
on total probability, we have
P(A) = P(B) P(A|B) + P(B") P(AB)
=0.65x0.32+0.35x 0.8
=0.208 +0.28 =0.488
Thus, the probability that the construction job will be completed in time is 0.488.
We shall now state and prove the Bayes' theorem.

Bayes’ TheoremIfE, E, ,..., E are n non empty events which constitute a partition
of sample space S,1.¢.E, E_,..., E are pairwise disjointand E WE U ... UE =S and
Ais any event of nonzero probability, then
P(E)P(A[E)

n

> P(E;)P(AE;)

=1

P(E|A) = foranyi=1,2,3,...n

Proof By formula of conditional probability, we know that

P(ANE))
_ P(EDPA[E)) o i
= (by multiplication rule of probability)
P(A)
P (E;)P(AE)) .
= — “— (by the result of theorem of total probability)

D P(E;))P(AE;)

j=1
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Remark The following terminology is generally used when Bayes' theorem is applied.
The events E, E , ..., E are called hypotheses.
The probability P(E)) is called the priori probability of the hypothesis E

The conditional probability P(E,[A) is called a posteriori probability of the
hypothesis E..

Bayes' theorem is also called the formula for the probability of "causes". Since the
E's are a partition of the sample space S, one and only one of the events E, occurs (i.e.
one of the events E, must occur and only one can occur). Hence, the above formula

gives us the probability of a particular E, (i.e. a "Cause"), given that the event A has
occurred.

The Bayes' theorem has its applications in variety of situations, few of which are
illustrated in following examples.

Example 16 Bag I contains 3 red and 4 black balls while another Bag IT contains 5 red
and 6 black balls. One ball is drawn at random from one of the bags and it is found to
be red. Find the probability that it was drawn from Bag II.

Solution Let E, be the event of choosing the bag I, E, the event of choosing the bag II
and A be the event of drawing a red ball.

1
Then P(E)=PE,)) = 3
. 3
Also P(AJE ) =P(drawing a red ball from Bag I) = =
5
and P(A|E,) = P(drawing a red ball from Bag II) = E

Now, the probability of drawing a ball from Bag II, being given that it is red,
is P(E,|A)
By using Bayes' theorem, we have

5
PEIA) = P(E,) P(ALE, ) __2u 3
2 P(E)P(AE)+PE,)PAE,) L 3 1 5 68
2 7 2 11

Example 17 Given three identical boxes I, II and III, each containing two coins. In
box I, both coins are gold coins, in box 11, both are silver coins and in the box III, there
is one gold and one silver coin. A person chooses a box at random and takes out a coin.
Ifthe coin is of gold, what is the probability that the other coin in the box is also of gold?
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Solution Let E,E and E, be the events that boxes I, II and I1I are chosen, respectively.

Then P(E,) = P(E,) = P(E) = %

Also, let A be the event that ‘the coin drawn is of gold’

2
Then P(A[E)) = P(a gold coin from bag I) = 3" 1
P(AIE)) = P(a gold coin from bag II) = 0

1
P(A[E,) = P(a gold coin from bag III) = )
Now, the probability that the other coin in the box is of gold
= the probability that gold coin is drawn from the box I.
=P(E,|A)
By Bayes' theorem, we know that

_ P(E,)P(AE,)
P(E,)P(AIE,) +P(E,) P(AJE, ) P(E,) P (AJE;)

P(E [A)

1

> ¢
3

l)(1+l><0+l><l
3 2

Example 18 Suppose that the reliability of a HIV test is specified as follows:

Of people having HIV, 90% of the test detect the disease but 10% go undetected. Of
people free of HIV, 99% of the test are judged HIV—-ive but 1% are diagnosed as
showing HIV+ive. From a large population of which only 0.1% have HIV, one person
is selected at random, given the HIV test, and the pathologist reports him/her as
HIV+ive. What is the probability that the person actually has HIV?

Solution Let E denote the event that the person selected is actually having HIV and A
the event that the person's HIV test is diagnosed as +ive. We need to find P(E|A).
Also E” denotes the event that the person selected is actually not having HIV.

Clearly, {E, E'} is a partition of the sample space of all people in the population.
We are given that

0.1
P(E) = 0.1% =— = 0.001
100
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P(E’) =1—P(E) = 0.999
P(A|E) =P(Person tested as HIV+ive given that he/she
is actually having HIV)

90
=90% =——=0.9
90% 100

and P(AJE") = P(Person tested as HIV +ive given that he/she
is actually not having HIV)

1
— 10/ — —— —
1% 100 0.01

Now, by Bayes' theorem
_ P(E)P(A|E)
P(E)P(A|E)+P(E")P(AIE")
0.001%0.9 90

= 0.001x0.9+0.999x0.01 - 1089
= 0.083 approx.

P(E|A)

Thus, the probability that a person selected at random is actually having HIV
given that he/she is tested HIV+ive is 0.083.

Example 19 In a factory which manufactures bolts, machines A, B and C manufacture
respectively 25%, 35% and 40% of the bolts. Of their outputs, 5, 4 and 2 percent are
respectively defective bolts. A bolt is drawn at random from the product and is found
to be defective. What is the probability that it is manufactured by the machine B?

Solution Let events B, B,, B, be the following :
B, : the bolt is manufactured by machine A
B, : the bolt is manufactured by machine B
B, : the bolt is manufactured by machine C

Clearly, B,, B,, B, are mutually exclusive and exhaustive events and hence, they
represent a partition of the sample space.

Let the event E be ‘the bolt is defective’.
The event E occurs with B, or with B, or with B.. Given that,
P(B) =25%=0.25, P (B) = 0.35 and P(B,) = 0.40
Again P(E[B,) = Probability that the bolt drawn is defective given that it is manu-
factured by machine A = 5% = 0.05
Similarly,  P(E[B,) = 0.04, P(E|B,) = 0.02.
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Hence, by Bayes' Theorem, we have
P(B,)P(EB,)
P(B,)P(EB,))+P(B,)P(E[B,)+P(B )P (E[B;)
035x0.04
0.25x0.05+0.35%0.04+ 0.40x 0.02

0.0140 28
0.0345 69

Example 20 A doctor is to visit a patient. From the past experience, it is known that
the probabilities that he will come by train, bus, scooter or by other means of transport

2 1 1
are respectively 073 ,Eandg . The probabilities that he will be late are 3 andﬁ,
if he comes by train, bus and scooter respectively, but if he comes by other means of
transport, then he will not be late. When he arrives, he is late. What is the probability
that he comes by train?

P(B,[E)

Solution Let E be the event that the doctor visits the patient late and let T, T, T,, T,
be the events that the doctor comes by train, bus, scooter, and other means of transport
respectively.

3 1 1 2
Th P(T) = —,P =-,P =-—and P =— i
cn (T) 10 (T,) 5 (Ty) 10 (T,) 5 (given)
1
P(E|T,) = Probability that the doctor arriving late comes by train = 1
- 1 1 . . .
Similarly, P(E|T,) = 3 P(ET) = o and P(E[T,) = 0, since he is not late if he

comes by other means of transport.
Therefore, by Bayes' Theorem, we have
P(T,|E) = Probability that the doctor arriving late comes by train

_ P(T)P(E[T)

P(T)P(E[T))+P(T,) PE|T,)+P(Ty) P(ET;)+P (T,)P(E[T,)
31

_ 10 4 3 1201

T3 11 1 1 1 2 40 18 2

—X =t = X=+ —x —+ =%

+ +
10 4 5 3 10 12 5

. |
Hence, the required probability is 5 .
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Example 21 A man is known to speak truth 3 out of 4 times. He throws a die and
reports that it is a six. Find the probability that it is actually a six.

Solution Let E be the event that the man reports that six occurs in the throwing of the
die and let S, be the event that six occurs and S, be the event that six does not occur.

1

Then P(S,) = Probability that six occurs = g
. 5
P(S,) = Probability that six does not occur = 5

P(E|S,) = Probability that the man reports that six occurs when six has
actually occurred on the die

3
= Probability that the man speaks the truth = 1

P(E[S,) = Probability that the man reports that six occurs when six has
not actually occurred on the die

3 1
= Probability that the man does not speak the truth =1 173
Thus, by Bayes' theorem, we get

P(S |E) = Probability that the report of the man that six has occurred is
actually a six
P(S)PE]S,)
P(S))P(E[S)+P(S,)P(ES,)

24 3
X — ==
8 8

[} KV KN KO8
0 | —

AN | =
A]—

3
Hence, the required probability is g

EXERCISE 13.3

1. Anurn contains 5 red and 5 black balls. A ball is drawn at random, its colour is
noted and is returned to the urn. Moreover, 2 additional balls of the colour drawn
are put in the urn and then a ball is drawn at random. What is the probability that
the second ball is red?
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A bag contains 4 red and 4 black balls, another bag contains 2 red and 6 black
balls. One of the two bags is selected at random and a ball is drawn from the bag
which is found to be red. Find the probability that the ball is drawn from the
first bag.

Of the students in a college, it is known that 60% reside in hostel and 40% are
day scholars (not residing in hostel). Previous year results report that 30% of all
students who reside in hostel attain A grade and 20% of day scholars attain A
grade in their annual examination. At the end of the year, one student is chosen
at random from the college and he has an A grade, what is the probability that the
student is a hostlier?

In answering a question on a multiple choice test, a student either knows the

3
answer or guesses. Let Z be the probability that he knows the answer and 1

be the probability that he guesses. Assuming that a student who guesses at the

1
answer will be correct with probability 1 What is the probability that the stu-
dent knows the answer given that he answered it correctly?

A laboratory blood test is 99% effective in detecting a certain disease when it is
in fact, present. However, the test also yields a false positive result for 0.5% of
the healthy person tested (i.e. if a healthy person is tested, then, with probability
0.005, the test will imply he has the disease). If 0.1 percent of the population
actually has the disease, what is the probability that a person has the disease
given that his test result is positive ?

There are three coins. One is a two headed coin (having head on both faces),
another is a biased coin that comes up heads 75% of the time and third is an
unbiased coin. One of the three coins is chosen at random and tossed, it shows
heads, what is the probability that it was the two headed coin ?

An insurance company insured 2000 scooter drivers, 4000 car drivers and 6000
truck drivers. The probability of an accidents are 0.01, 0.03 and 0.15 respectively.
One of the insured persons meets with an accident. What is the probability that
he is a scooter driver?

A factory has two machines A and B. Past record shows that machine A produced
60% of the items of output and machine B produced 40% of the items. Further,
2% of the items produced by machine A and 1% produced by machine B were
defective. All the items are put into one stockpile and then one item is chosen at
random from this and is found to be defective. What is the probability that it was
produced by machine B?

Two groups are competing for the position on the Board of directors of a
corporation. The probabilities that the first and the second groups will win are
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0.6 and 0.4 respectively. Further, if the first group wins, the probability of
introducing a new product is 0.7 and the corresponding probability is 0.3 if the
second group wins. Find the probability that the new product introduced was by
the second group.

Suppose a girl throws a die. If she gets a 5 or 6, she tosses a coin three times and
notes the number of heads. If she gets 1, 2, 3 or 4, she tosses a coin once and
notes whether a head or tail is obtained. If she obtained exactly one head, what
is the probability that she threw 1, 2, 3 or 4 with the die?

A manufacturer has three machine operators A, B and C. The first operator A
produces 1% defective items, where as the other two operators B and C pro-
duce 5% and 7% defective items respectively. A is on the job for 50% of the
time, B is on the job for 30% of the time and C is on the job for 20% of the time.
A defective item is produced, what is the probability that it was produced by A?
A card from a pack of 52 cards is lost. From the remaining cards of the pack,
two cards are drawn and are found to be both diamonds. Find the probability of
the lost card being a diamond.

4
Probability that A speaks truth is 5 A coin is tossed. A reports that a head

appears. The probability that actually there was head is

(A) 2 (B) = © : (D) =

5 2 5 5
If A and B are two events such that A — B and P(B) # 0, then which of the
following is correct?

(A) P(A|B)=% (B) P(AB) < P(A)

(C) P(AB) = P(A) (D) None of these

13.6 Random Variables and its Probability Distributions

We have already learnt about random experiments and formation of sample spaces. In
most of these experiments, we were not only interested in the particular outcome that
occurs but rather in some number associated with that outcomes as shown in following
examples/experiments.

(1) Intossing two dice, we may be interested in the sum of the numbers on the

two dice.

(i) In tossing a coin 50 times, we may want the number of heads obtained.
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(iii) In the experiment of taking out four articles (one after the other) at random
from a lot of 20 articles in which 6 are defective, we want to know the
number of defectives in the sample of four and not in the particular sequence
of defective and nondefective articles.

In all of the above experiments, we have a rule which assigns to each outcome of
the experiment a single real number. This single real number may vary with different
outcomes of the experiment. Hence, it is a variable. Also its value depends upon the
outcome of a random experiment and, hence, is called random variable. A random
variable is usually denoted by X.

If you recall the definition of a function, you will realise that the random variable X
is really speaking a function whose domain is the set of outcomes (or sample space) of
a random experiment. A random variable can take any real value, therefore, its
co-domain is the set of real numbers. Hence, a random variable can be defined as
follows :

Definition 4 A random variable is a real valued function whose domain is the sample
space of a random experiment.

For example, let us consider the experiment of tossing a coin two times in succession.
The sample space of the experiment is S = {HH, HT, TH, TT}.

If X denotes the number of heads obtained, then X is a random variable and for
each outcome, its value is as given below :

X(HH)=2,XHT)=1,X (TH)=1, X (TT)=0.

More than one random variables can be defined on the same sample space. For
example, let Y denote the number of heads minus the number of tails for each outcome
of the above sample space S.

Then Y(HH) =2, Y (HT)=0,Y (TH)=0,Y (TT) =-2.

Thus, X and Y are two different random variables defined on the same sample

space S.

Example 22 A person plays a game of tossing a coin thrice. For each head, he is
given Rs 2 by the organiser of the game and for each tail, he has to give Rs 1.50 to the
organiser. Let X denote the amount gained or lost by the person. Show that X is a
random variable and exhibit it as a function on the sample space of the experiment.

Solution X is a number whose values are defined on the outcomes of a random
experiment. Therefore, X is a random variable.
Now, sample space of the experiment is

S = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}
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Then X(HHH)=Rs (2 x3)=Rs 6
X (HHT) =X (HTH) = X(THH) =Rs (2 x 2 — 1 x 1.50) = Rs 2.50
X(HTT) = X(THT) = (TTH)=Rs (1 x2) — (2 x 1.50) =—Re 1

and X(TTT)=-Rs (3 x 1.50) = — Rs 4.50

where, minus sign shows the loss to the player. Thus, for each element of the sample

space, X takes a unique value, hence, X is a function on the sample space whose range
is

{~=1, 2.50, —4.50, 6}
Example 23 A bag contains 2 white and 1 red balls. One ball is drawn at random and
then put back in the box after noting its colour. The process is repeated again. If X
denotes the number of red balls recorded in the two draws, describe X.
Solution Let the balls in the bag be denoted by W, w,, . Then the sample space is
S={W, W,, W, W,, W, W,, W, W,, W, [, W, I, TW , TW,, I'r}
Now, for we S
X ()= number of red balls
Therefore
X (W, W}) = X (W, W,}) =X ({w, Wo) = X (fw, w,}) = 0
X (W, T} =X (Iw, r}) = X ({rg }) = X({r w,}) = T and X({r r}) =2
Thus, X is a random variable which can take values 0, 1 or 2.

13.6.1 Probability distribution of a random variable

Let us look at the experiment of selecting one family out of ten families f, f, ,..., f,, in
such a manner that each family is equally likely to be selected. Let the families f, f,
.., f,have 3,4,3,2,5,4,3,6,4, 5 members, respectively.

Let us select a family and note down the number of members in the family denoting

X. Clearly, X is a random variable defined as below :

X(f)=3,X({f)=4, X{f)=3,X(f)=2,X({f) =5,

X(f6) =4, X(f7) =3, X(fx) =6, X(ff;) =4, X(fm) =5
Thus, X can take any value 2,3,4,5 or 6 depending upon which family is selected.

Now, X will take the value 2 when the familyf, is selected. X can take the value
3 when any one of the families f, f, f is selected.
Similarly, X =4, when family f,, f, or f; is selected,
X =5, when family f, or f  is selected

and X =6, when family f; is selected.
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Since we had assumed that each family is equally likely to be selected, the probability

that family f, is selected is i
1

1 1
Thus, the probability that X can take the value 2 is E . We write P(X =2) :E

Also, the probability that any one of the families f , f, or f_is selected is
3
P({fl’ f35 f7}) = E

3
Thus, the probability that X can take the value 3 = 0

3
We write P(X=3)= 0

Similarly, we obtain

3

P(X=4)=P({f,, f, f;}) = 0
2
P(X=35)=P({f, f,}) 10

and P(X =6) = P({f,}) =%

Such a description giving the values of the random variable along with the
corresponding probabilities is called the probability distribution of the random
variable X.

In general, the probability distribution of a random variable X is defined as follows:
Definition 5 The probability distribution of a random variable X is the system of numbers

X : X1 X2 Xn
P(X) : P, P, P,
n
where, p>0, > p=1,i=1,2,.,n
i=l

The real numbers X5 Xypeees X, ATC the possible values of the random variable X and

p. (I = 1,2,..., n) is the probability of the random variable X taking the value X i.e.,
P(X =x)=p,
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If x. is one of the possible values of a random variable X, the statement

X =X; is true only at some point (s) of the sample space. Hence, the probability that
X takes value X is always nonzero, i.e. P(X =Xx)# 0.

Also for all possible values of the random variable X, all elements of the sample
space are covered. Hence, the sum of all the probabilities in a probability distribution
must be one.

Example 24 Two cards are drawn successively with replacement from a well-shuffled
deck of 52 cards. Find the probability distribution of the number of aces.

Solution The number of aces is a random variable. Let it be denoted by X. Clearly, X
can take the values 0, 1, or 2.

Now, since the draws are done with replacement, therefore, the two draws form
independent experiments.

Therefore, P(X = 0) =P(non-ace and non-ace)
=P(non-ace) x P(non-ace)

48 48 144

U ARV
52 52 169
P(X = 1) =P(ace and non-ace or non-ace and ace)
= P(ace and non-ace) + P(non-ace and ace)

= P(ace). P(non-ace) + P (non-ace) . P(ace)

4 48 48 4 24

52 52 52 52169

and P(X=2)=P (ace and ace)
4 4 1
= —X——=—
52 52 169
Thus, the required probability distribution is
X 0 1 2
144 24 1
PX)y| — | — | —
169 169 | 169

Example 25 Find the probability distribution of number of doublets in three throws of
a pair of dice.
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Solution Let X denote the number of doublets. Possible doublets are

(1,1),(2,2), (3,3), (4,4), (5,5),(6,6)
Clearly, X can take the value 0, 1, 2, or 3.

Probability of getting a doublet = o1
36 6
. . 1 5
Probability of not getting a doublet =1 — g = g
5 5 5 125
Now P(X=0)=P (nodoublet) ==X =X —=—
6 6 6 216

P(X = 1) = P (one doublet and two non-doublets)
1 5 5 5 1 5 575l

= =X=X—=F=X=X=4+=X=X=

66 6 6 6 6 6 6 6
(1 8V s
6 62J 216

P(X =2) = P(two doublets and one non-doublet)
1151515113(1

6 6 6 6 6 6 6 6 6 \6
and P(X'=3) = P (three doublets)
1 1.1 1
= = X=X ===
6 6 6 216
Thus, the required probability distribution is
X 0 1 2 3
125 75 15 1
P(X)
216 | 216 | 216 | 216

Verification Sum of the probabilities

: 125 75 15 1
Z P=——t—t—+t——
i=l 216 216 216 216

125+ 75+15+1 216 1
216 216
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Example 26 Let X denote the number of hours you study during a randomly selected
school day. The probability that X can take the valuesX, has the following form, where
k is some unknown constant.

0.1,if x=0

kx, if x=1o0r2

k (5—x), if x=3o0r4

0, otherwise

P(X=x)=

(a) Find the value of k.

(b) What is the probability that you study at least two hours ? Exactly two hours? At
most two hours?

Solution The probability distribution of X is

X | 0 VY 3 4
P(X) | 0.1 k | 2k | 2k

n
(a) We know that z P =1
=l
Therefore 0.1 +k+2k+2k +k=1
ie. k=0.15
(b) P(you study at least two hours) =P(X2>2)

=P(X=2)+P(X=3)+P(X=4)
=2k+2k+k=5k=5x0.15=0.75

P(you study exactly two hours) =P(X=2)
=2k=2x0.15=0.3
P(you study at most two hours) =P(X<2)

=P(X=0)+P(X=1)+P(X=2)
=0.1+k+2k=0.1+3k=0.1+3x0.15
=0.55

13.6:2 Mean of a random variable

In many problems, it is desirable to describe some feature of the random variable by
means of a single number that can be computed from its probability distribution. Few
such numbers are mean, median and mode. In this section, we shall discuss mean only.
Mean is a measure of location or central tendency in the sense that it roughly locates a
middle or average value of the random variable.
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Definition 6 Let X be a random variable whose possible values X, X,, X, ..., X, occur
with probabilities P,s Py Pysees P, respectively. The mean of X, denoted by |, is the

n
number in p; i.e. the mean of X is the weighted average of the possible values of X,
i=l
each value being weighted by its probability with which it occurs.
The mean of a random variable X is also called the expectation of X, denoted by

E(X).
Thus, E(X)=p =2, %Pi =X, PEX, P, T FX P,
i=l

In other words, the mean or expectation of a random variable X is the sum of the
products of all possible values of X by their respective probabilities.

Example 27 Let a pair of dice be thrown and the random variable X be the sum of the
numbers that appear on the two dice. Find the mean or expectation of X.

Solution The sample space of the experiment consists of 36 elementary events in the
form of ordered pairs (X, y,), where x = 1,2,3,4,5, 6andy. =1, 2,3,4,5, 6.

The random variable X i.e. the sum of the numbers on the two dice takes the
values 2, 3,4,5,6,7,8,9,10, 11 or 12.

1
Now P(X =2)=P{(1,1)}) BEY:
L _2
P(X=3)=P(i(1.2), 2,1)}) =3¢
3
P(X=4)=P({(1,3),(2.2), 3. D)) =3¢
4
P(X=5)=P({(14),(2.3).3.2). 4. D)) =3¢
5
P(X = 6) = P({(1,5),(2,4),(3,3), (4,2), (5,1)}) Y
6
P(X =7) = P({(1,6), (2.,5), (3.,4), (4,3),(5.2), (6,1)}~)=3—6

5
P(X=8) = P({(2,6), 3,5), (4:4),(5,3), (6.2)}) = 3¢
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4
P(X=9)= P({(3,6),(4.,5),(5.4), (6’3)}):3_6
3
P(X=10) = P({(4,6), 5.5). (6.4)}) =3¢
2
P(X=11) = P({(5,6), (6,5)}) Y

1
P(X=12)=P(i(6.0)}) =3¢

The probability distribution of X is

XorXx 2 13 (456 (789|101l 12

_— 112|345 |6 5|43 (2]L
X)or B 3¢ 136 | 36 | 36 | 36 | 36 | 36 | 36 | 36 | 36 | 36

Therefore,

=E(X)= Zn:x p —2><i+3><i+4><i+5><i
H R TR TR 36 36

+6><i+7><£+8><i +9><i+10><i+11><£+12><L
36 36 36

_ 2+6+12+20+30+42+40+36+30+22+12 _7
36

Thus, the mean of the sum of the numbers that appear on throwing two fair dice is 7.

13.6.3 Variance of a random variable

The mean of a random variable does not give us information about the variability in the
values of the random variable. In fact, if the variance is small, then the values of the
random variable are close to the mean. Also random variables with different probability
distributions can have equal means, as shown in the following distributions of X and Y.

X 1| 2 3 4
1| 2 3 2
PX) | = | = | = | =
8 | 8 8 8




566 MATHEMATICS

Y -1 0 4 5 6
N
) 8 8 8 8 8
Clearly E(X)= lxl+2xz+3x§+ 4x2:£:2.75
8 8 8 8 8
and E(Y) = —lxl+0xg+4x§+5xl= 6><l=2=2.75
8 8 8 8 8 8

The variables X and Y are different, however their means are same. It is also
easily observable from the diagramatic representation of these distributions (Fig 13.5).

P(X) PCY)

Ys1 ¥s
2/ 8T 2/ 8

il X | ]
of 1 2 3 4 1 O 1 2 3 4 5 6
) (i)
Fig 13.5

To distinguish X from'Y, we require a measure of the extent to which the values of
the random variables spread out. In Statistics, we have studied that the variance is a
measure of the spread or scatter in data. Likewise, the variability or spread in the
values of a random variable may be measured by variance.

[ ]
w
S
S

Definition 7 Let X be a random variable whose possible values X, X,,...,X, occur with
probabilities p(X ), p(X,),..., P(X,) respectively.

Let u = E (X) be the mean of X. The variance of X, denoted by Var (X) or 0'X2 is

defined as

o, = VarX)=> (-’ p(x)
i=l

or equivalently axz =EX - uy
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The non-negative number

5, = JVart) = > (x -w? p(x)
i=1

is called the standard deviation of the random variable X.
Another formula to find the variance of a random variable. We know that,

Var (X) = Y (=)’ p(x)
i=l
= D07+ 7 =210 %) p(x;)
i=1
= DX PO+ Dot pO) =324 p(X)
i=l i=l i=1

= 3P+ TP =21 X pOK)
i=l i=l i=l

= ixiz p(X)+ uz—mz[sincei p (Xx;)=landp= ixi p(Xi)}
i=l i=1 i=1

= inz p(Xi)—uz
i=l
n n 2
or Var (X) =% p(xi)—[zxi p(&)]
i=l i=l

or Var (X) = E(X?) — [E(X)]%, where E(X?) = zn:xﬁ p(X;)
i=l

Example 28 Find the variance of the number obtained on a throw of an unbiased die.

Solution The sample space of the experiment is S = {1, 2, 3, 4, 5, 6}.

Let X denote the number obtained on the throw. Then X is a random variable
which can take values 1, 2, 3,4, 5, or 6.
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1
Also P(1) =P(2)=P(3)=P4)=P(5) =P(6) = 5
Therefore, the Probability distribution of X is

X 1 2 3 4 5 6

o 1 1 1 1 1 1
(X) 6 6 6 6 6 6
n
Now E(X)= 2 % P(X)
i=l
= 1><l+2><l+3><l +4><l+5><l+6><l:2
6 6 6 6 6 6
Also E(X?) = 12><l+22><—1+32><l+42><l+52 xl+62xl:2
6 6 6 6 6 6

Thus, Var (X) = E (X?) — (E(X))*

91 (2)2_2_ﬂ _35

“%6 L6) 6 36 12

Example 29 Two cards are drawn simultaneously (or successively without replacement)
from a well shuffled pack of 52 cards. Find the mean, variance and standard deviation
of the number of kings.

Solution Let X denote the number of kings in a draw of two cards. X is a random
variable which can assume the values 0, 1 or 2.

48!
48 (48 — N1
. C, 21(48_2)! 48x47 188
Now P(X =0) =P (no king) =——%= = o1
(X=0) =P oking) = =91 =551 21
21(52-2)!
R le
P(X = 1) = P (one king and one non-king) =#
2
_ 4x48x2 32

T T50x51 21
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d P(X = 2) = P (two kings) C, 43 1
an = = 0 KIngs) = = =
VOIS TR T xs1 221

Thus, the probability distribution of X is

X 0 1 2

188 [ 32 |1
221 221 | 221

P(X)

Now Mean of X =E(X)= 2% p(x)

i=l
188 32 ) 1 34

= Ox—+1Ix=—+

P ——
221 221 221 221

Also E(X?) = anxf pOX)
=

=0 x&+12x£+22xL:£

21 21 221 221
Now Var(X) = E(X?) — [E(X)F

36 ( 34 jz 6300

T 21 \221) (2217

Therefore o, = .,/Var(X = ‘63(1)0 =0.37

2

|[EXERCISE 13.4|

1. State which of the following are not the probability distributions of a random
variable. Give reasons for your answer.

M|l xlo [1 |2

PX)| 0.4 | 0402

i | x o |1 |2 | 3|4
Px)| 0.1 | 05|02 [-0.1] 0.3
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i) [ Y [-1t To [1
P(Y)[ 06| 0.1 0.2

ivw [z 3 J2 [1 [o [
Pz)| 03|02 |04 01005

An urn contains 5 red and 2 black balls. Two balls are randomly drawn. Let X
represent the number of black balls. What are the possible values of X? Is X a
random variable ?

Let X represent the difference between the number of heads and the number of
tails obtained when a coin is tossed 6 times. What are possible values of X?

Find the probability distribution of
(i) number of heads in two tosses of a coin.
(i) number of tails in the simultaneous tosses of three coins.

(i) number of heads in four tosses of a coin.

Find the probability distribution of the number of successes in two tosses of a die,
where a success is defined as

(i) number greater than 4

(i) six appears on at least one die

From a lot of 30 bulbs which include 6 defectives, a sample of 4 bulbs is drawn
at random with replacement. Find the probability distribution of the number of
defective bulbs.

A coin is biased so that the head is 3 times as likely to occur as tail. If the coin is
tossed twice, find the probability distribution of number of tails.

A random variable X has the following probability distribution:

X o1 ]2]3]4]5]6] 7
POl 0 | k | 2k| 2k | 3k| k2 |2ke| 7ke+k

Determine
(1) k (i) P(X<3)
@) P(X>06) (iv) P(0<X<3)
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The random variable X has a probability distribution P(X) of the following form,
where K is some number :

k, if x=0

2k, if x=1
P(X) = .

3k, if x=2

0, otherwise

(a) Determine the value of k.

(b) FindP (X <2), P(X<2),P(X2>2).

Find the mean number of heads in three tosses of a fair coin.

Two dice are thrown simultaneously. If X denotes the number of sixes, find the
expectation of X.

Two numbers are selected at random (without replacement) from the first six
positive integers. Let X denote the larger of the two numbers obtained. Find
E(X).

Let X denote the sum of the numbers obtained when two fair dice are rolled.
Find the variance and standard deviation of X.

A class has 15 students whose ages are 14, 17, 15, 14,21, 17, 19, 20, 16, 18, 20,
17, 16, 19 and 20 years. One student is selected in such a manner that each has
the same chance of being chosen and the age X of the selected student is
recorded. What is the probability distribution of the random variable X? Find
mean, variance and standard deviation of X.

In a meeting, 70% of the members favour and 30% oppose a certain proposal.
A member is selected at random and we take X = 0 if he opposed, and X =1 if
he is in favour. Find E(X) and Var (X).

Choose the correct answer in each of the following:

16.

17.

The mean of the numbers obtained on throwing a die having written 1 on three
faces, 2 on two faces and 5 on one face is

8
(A) 1 (B) 2 ©) 5 (D) 3

Suppose that two cards are drawn at random from a deck of cards. Let X be the
number of aces obtained. Then the value of E(X) is

37 5 1 2
(A) 1 (B) Il ©) Il (D) Il
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13.7 Bernoulli Trials and Binomial Distribution
13.7.1 Bernoulli trials

Many experiments are dichotomous in nature. For example, a tossed coin shows a
‘head’ or ‘tail’, a manufactured item can be ‘defective’ or ‘non-defective’, the response
to a question might be ‘yes’ or ‘no’, an egg has ‘hatched’ or ‘not hatched’, the decision
is “yes’ or ‘no’ etc. In such cases, it is customary to call one of the outcomes a ‘success’
and the other ‘not success’ or “failure’. For example, in tossing a coin, if the occurrence
of the head is considered a success, then occurrence of tail is a failure.

Each time we toss a coin or roll a die or perform any other experiment, we call ita
trial. If a coin is tossed, say, 4 times, the number of trials is 4, each having exactly two
outcomes, namely, success or failure. The outcome of any trial is independent of the
outcome of any other trial. In each of such trials, the probability of success or failure
remains constant. Such independent trials which have only two outcomes usually
referred as ‘success’ or ‘failure’ are called Bernoulli trials.

Definition 8 Trials of a random experiment are called Bernoulli trials, if they satisfy
the following conditions :

() There should be a finite number of trials.

(it) The trials should be independent.
(ii1) Each trial has exactly two outcomes : success or failure.
(iv) The probability of success remains the same in each trial.

For example, throwing a die 50 times is a case of 50 Bernoulli trials, in which each
trial results in success (say an even number) or failure (an odd number) and the
probability of success (p) is same for all 50 throws. Obviously, the successive throws
of the die are independent experiments. If the die is fair and have six numbers 1 to 6

1 1
written on six faces, then p = 5 andg=1-p= 5 = probability of failure.
Example 30 Six balls are drawn successively from an urn containing 7 red and 9 black

balls. Tell whether or not the trials of drawing balls are Bernoulli trials when after each
draw the ball drawn is

(1) replaced (i) notreplaced in the urn.
Solution
() The number of trials is finite. When the drawing is done with replacement, the
7
probability of success (say, red ball) is p = E which is same for all six trials

(draws). Hence, the drawing of balls with replacements are Bernoulli trials.
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(i) When the drawing is done without replacement, the probability of success
(i.e., red ball) in first trial is E ,in 2nd trial is E if the first ball drawn is red or
E if the first ball drawn is black and so on. Clearly, the probability of success is

not same for all trials, hence the trials are not Bernoulli trials.

13.7.2 Binomial distribution

Consider the experiment of tossing a coin in which each trial results in success (say,
heads) or failure (tails). Let S and F denote respectively success and failure in each
trial. Suppose we are interested in finding the ways in which we have one success in
six trials.

Clearly, six different cases are there as listed below:
SFFFFF, FSFFFF, FFSFFF, FFFSFE FFFESE, FFFFFS.

6!

41x21

lengthy job to list all of these ways. Therefore, calculation of probabilities of 0, 1, 2,...,
n number of successes may be lengthy and time consuming. To avoid the lengthy
calculations and listing of all the possible cases, for the probabilities of number of
successes in N-Bernoulli trials, a formula is derived. For this purpose, let us take the
experiment made up of three Bernoulli trials with probabilities p and q =1 — p for
success and failure respectively in each trial. The sample space of the experiment is
the set

Similarly, two successes and four failures can have combinations. It will be

S = {SSS, SSF, SES, FSS, SFF, FSF, FFS, FFF}
The number of successes is a random variable X and can take values 0, 1, 2, or 3.
The probability distribution of the number of successes is as below :

P(X =0) = P(no success)
~P({FFF}) = P(F) P(F) P(F)
=0 .0.0= ¢Psince the trials are independent

P(X = 1) = P(one successes)
= P({SFF, FSF, FFS})
=P({SFF}) + P({FSF}) + P({FFS})
=P(S) P(F) P(F) + P(F) P(S) P(F) + P(F) P(F) P(S)
=pa.qg+q.p.q+ q.0.p=3pg

P(X=2)=P (two successes)
= P({SSF, SFS, FSS})
=P({SSF}) + P ({SFS}) + P({FSS})
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=P(S) P(S) P(F) + P(S) P(F) P(S) + P(F) P(S) P(S)
=p.p.g.+ p.gp + gp.p = 3p4q

and P(X = 3) = P(three success) = P ({SSS})
=P(S).P(S).PS)=p

Thus, the probability distribution of X is

X 0 1 2 3

PX)| q’ | 3g°p | 3qp®| p’

Also, the binominal expansion of (¢ + p)? is

q3 +3q2 p+ 3qp2 + p3
Note that the probabilities of 0, 1, 2 or 3 successes are respectively the 1st, 2nd,
3rd and 4th term in the expansion of (q + p)°.
Also, since g+ p =1, it follows that the sum of these probabilities, as expected, is 1.

Thus, we may conclude that in an experiment of n-Bernoulli trials, the probabilities
of 0, 1, 2,..., n successes can be obtained as 1st, 2nd,...,(n+ 1)" terms in the expansion
of (g + p)". To prove this assertion (result), let us find the probability of X-successes in
an experiment of n-Bernoulli trials.

Clearly, in case of X successes (S), there will be (n — X) failures (F).

n!
Now, X successes (S) and (n — x) failures (F) can be obtained in x!(n—x)! Ways.

In each of these ways, the probability of X successes and (n — x) failures is

= P(x successes) . P(n—x) failures is

~ P(S).P(S)..P(S) - P(F).P(F)..P(F) _

X n—x
X times (n—Xx) times p q
n!
Thus, the probability of X successes in n-Bernoulli trials is mpx (oling
or an px qn—x
Thus P(x successes) = "C,p*q"™, x=0,1,2,..,n.(q=1-p)

Clearly, P(x successes), i.e. "C p*q"™is the (x + 1)" term in the binomial
expansion of (q+ p)".

Thus, the probability distribution of number of successes in an experiment consisting
of'n Bernoulli trials may be obtained by the binomial expansion of (q + p)". Hence, this
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distribution of number of successes X can be written as
X 0 1 2 X n
P(X) nC0 qn nC1 qn—lpl nC2 qn—2p2 an qn—xpx nCn pn

The above probability distribution is known as binomial distribution with parameters
n and p, because for given values of n and p, we can find the complete probability
distribution.

The probability of X successes P(X = x) is also denoted by P (X) and is given by
P(x) ="C q**p¥ x=0,1,..,n.(q=1-p)

This P (x) is called the probability function of the binomial distribution.

A binomial distribution with n-Bernoulli trials and probability of success in each
trial as p, is denoted by B(n, p).

Let us now take up some examples.
Example 31 If a fair coin is tossed 10 times, find the probability of
(1) exactly six heads

(ii) at least six heads
(ii)) at most six heads

Solution The repeated tosses of a coin are Bernoulli trials. Let X denote the number
of heads in an experiment of 10 trials.

1
Clearly, X has the binomial distribution withn=10 and p= By

Therefore P(X=x)="Cg™mp*,x=0,1,2,.,n
H n=10 ! = = l
ere ) p—z > q p= 5
YO (1) 1)
Therefore P(X=x)= IOCX[— (—j ="C, [—j
2 2 2
Now (i) P(X=6)=1°C (1}1‘) 100 1 105
ow (i =6)= - =— =
\2)  6lx412° 512

(if) P(at least six heads) = P(X = 6)
=P(X=6)+PX=7)+P(X=8)+PX=9)+P (X=10)
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1 10 1 10 1 10 1 10 1 10
_locé[z) +]0C7(§J +'°C8(5) +10C9(5) +]0C10(E)
(100 ) (1ot} (1ot ) (10r) (100)]1 193
Lé'me (Frear) * L8'><2'J onar) L) [27 7512

(ii)) P(at most six heads) = P(X < 6)
=PX=0+PX=1)+PX=2)+P(X=3)
+PX=4)+P(X=5+P(X=6)

10 10 10 10
_ (L +1°C, 1 +1°C, 1 +'¢, %
2 2 2 2
10 10 10
1 1 1
+ IOC4 (E\J +10C5 (Ej +10C6(5)

848 53

1024 64

Example 32 Ten eggs are drawn successively with replacement from a lot containing
10% defective eggs. Find the probability that there is at least one defective egg.

Solution Let X denote the number of defective eggs in the 10 eggs drawn. Since the
drawing is done with replacement, the trials are Bernoulli trials. Clearly, X has the

1
binomial distribution withn=10and p=——=—
100 10°
9
Therefore q=1-p=—
10
Now P(at least one defective egg) =P(X=>1)=1-P (X=0)

10
B 10C( j :1_2
10 10%

|[EXERCISE 13.5|

1. A die is thrown 6 times. If ‘getting an odd number’ is a success, what is the

probability of
(i) 5 successes? (i) at least 5 successes?

(iii) at most 5 successes?
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A pair of dice is thrown 4 times. If getting a doublet is considered a success, find
the probability of two successes.

There are 5% defective items in a large bulk of items. What is the probability
that a sample of 10 items will include not more than one defective item?

Five cards are drawn successively with replacement from a well-shuffled deck
of 52 cards. What is the probability that

(i) all the five cards are spades?
(i) only 3 cards are spades?
(iii) none is a spade?
The probability that a bulb produced by a factory will fuse after 150 days of use
is 0.05. Find the probability that out of 5 such bulbs
(i) none
(i) not more than one
(i) more than one
(iv) at least one
will fuse after 150 days of use.
A bag consists of 10 balls each marked with one of the digits 0 to 9. If four balls

are drawn successively with replacement from the bag, what is the probability
that none is marked with the digit 07

In an examination, 20 questions of true-false type are asked. Suppose a student
tosses a fair coin to determine his answer to each question. If the coin falls
heads, he answers 'true'; if it falls tails, he answers 'false'. Find the probability
that he answers at least 12 questions correctly.

Suppose X has a binomial distribution B [6, 1) . Show that X =3 is the most
2

likely outcome.

(Hint : P(X =3) is the maximum among all P(Xi)’ X, = 0,1,2,3,4,5,6)

On a multiple choice examination with three possible answers for each of the
five questions, what is the probability that a candidate would get four or more
correct answers just by guessing ?

A person buys a lottery ticket in 50 lotteries, in each of which his chance of
winning a prize is ﬁ) . What is the probability that he will win a prize

(a) at least once (b) exactly once (c) at least twice?
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Find the probability of getting 5 exactly twice in 7 throws of a die.
Find the probability of throwing at most 2 sixes in 6 throws of a single die.

It is known that 10% of certain articles manufactured are defective. What is the
probability that in a random sample of 12 such articles, 9 are defective?

In each of the following, choose the correct answer:
In a box containing 100 bulbs, 10 are defective. The probability that out of a
sample of 5 bulbs, none is defective is

y 1 5 9 5 2
(A) 10 ® (1] © ] o3

1
The probability that a student is not a swimmer is g Then the probability that

out of five students, four are swimmers is

o (4)L (ﬁj“_l
&) C“(sj 5 ®13)3
1(4Y
(©) °C, g(gj (D) None of these

Miscellaneous’Examples

Example 33 Coloured balls are distributed in four boxes as shown in the following
table:

Box Colour
Black White Red Blue
I 3 4 5 6
II 2 2 2 2
11T 1 2 3 1
v 4 3 1 5

A box is selected at random and then a ball is randomly drawn from the selected

box. The colour of the ball is black, what is the probability that ball drawn is from the
box II1?
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Solution Let A, E,, E,, E, and E, be the events as defined below :
A : ablack ball is selected E, :box I is selected
E, : box Il is selected E, : box Il is selected
E,: box IV is selected

Since the boxes are chosen at random,

1

Therefore P(E, =P(E, =P(E, =P(E,) = Z
3 2 1 4
Also P(AIE) = ITE P(AIE) = 3 P(A[E,) = 7 and P(A|E)) = G

P(box III is selected, given that the drawn ball is black) = P(E,|A). By Bayes'
theorem,

P(E3 ) 'P(A|E3 )

PE_|A) =
( 3| ) P(E,)P(A[E, )+P(E,)P(A[E,)+P(E;)P (A|E;)+P(E4) P(A[E,)
1 1
27
=T 3 1 1. 1 1.1 7 2%
—X— =X —F+—=X=—+—=X—
4 18 4 4 4 7 4 13

Example 34 Find the mean of the Binomial distribution B(4, 13]

Solution Let X be the random variable whose probability distribution is B[4,§).

H n=4 ! d 1 1_2
ere =4,p==—and q= 1-===
P 3 q 3 3
4-x X
4 2
We know that PX=x)="C, (E) (gj ,x=0,1,2,3, 4.
i.e. the distribution of X is
X. P(x.) X. P(x)
N
0 ‘C, [—] 0
3
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4
Now Mean (1) = 2% P(X)
i=l

o3[ @ el

3 2
= 4><2—4+ 2><6><§—4+3><4 ><3£4+4><1><3i4

3244842444 108 4
A\ 3

3* 1

3
Example 35 The probability of a shooter hitting a target is rk How many minimum
number of times must he/she fire so that the probability of hitting the target at least
once is more than 0.99?
Solution Let the shooter fire n times. Obviously, n fires are n Bernoulli trials. In each

3
trial, p = probability of hitting the target = 1 and q = probability of not hitting the

1 n n—Xx X n 1 X 3 g n 3X
target=z.Then PX=x)= C,q "p'="7C, 7 7 :CX4—n.
Now, given that,

P (hitting the target at least once) > 0.99
ie. P(x>1)>0.99
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Therefore, 1-PXx=0)>0.99
1

or 1-"C, ol 0.99
n 1 . 1

or COF <0.01 1e. 4_n <0.01

1
or 4n> —— =100 o (D

0.01

The minimum value of n to satisfy the inequality (1) is 4.
Thus, the shooter must fire 4 times.

Example 36 A and B throw a die alternatively till one of them gets a ‘6" and wins the
game. Find their respective probabilities of winning, if A starts first.

Solution Let S denote the success (getting a “6°) and F denote the failure (not getting
a ‘o).

1 5
Thus, P(S) = - P(F)==
us (5=< (F) P

1
P (A wins in the first throw) = P(S) = g

A gets the third throw, when the first throw by A and second throw by B result into
failures.

55 1
Therefore, P(A wins in the 3rd throw) = P(FFS) = P(F)P(F)P(S)= EX gxg
HE
= — K —
6) 6
N\ 5)*(1
P(A wins in the 5th throw) = P (FFFFS) = g g and so on.
, 1 (5 (1) (5)(1
Hence, PAAwins)==+|=| |=|+|=]| || +~
6 \6/ \6 6/ \6
1
6 _ 5
L2
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) ) 6 5
P(B wins) =1 — P (A wins) = l_ﬁ:ﬁ

Remark Ifa +ar +ar2 + ... + ar! + ..., where |r| < 1, then sum of this infinite G.P.

a
is given by ﬁ (Refer A.1.3 of Class XI Text book).

Example 37 If a machine is correctly set up, it produces 90% acceptable items. If it is
incorrectly set up, it produces only 40% acceptable items. Past experience shows that
80% of the set ups are correctly done. If after a certain set up, the machine produces
2 acceptable items, find the probability that the machine is correctly setup.

Solution Let A be the event that the machine produces 2 acceptable items.

Also let B, represent the event of correct set up and B, represent the event of
incorrect setup.

Now P(B,) = 0.8, P(B,) = 0.2
P(AB,) =0.9 0.9 and P(A|B,) = 0.4 x 0.4
Therefore P(B,|A) = P(B)) P(AB))
1 P(B)P(AB,)+P(B,)P(AB,)
_ 08x09x%09 648 0,95

0.8%09%09102x04%04 630

Miscellaneous Exercise on Chapter 13

1. A and Bare two events such that P (A) # 0. Find P(B|A), if
(i) A is a subset of B (i) AnB=¢
2. A couple has two children,
(1) Find the probability that both children are males, if it is known that at least
one of the children is male.

(ii) Find the probability that both children are females, if it is known that the
elder child is a female.

3. Suppose that 5% of men and 0.25% of women have grey hair. A grey haired
person is selected at random. What is the probability of this person being male?
Assume that there are equal number of males and females.

4. Suppose that 90% of people are right-handed. What is the probability that
at most 6 of a random sample of 10 people are right-handed?
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An urn contains 25 balls of which 10 balls bear a mark 'X' and the remaining 15
bear a mark "Y'". A ball is drawn at random from the urn, its mark is noted down
and it is replaced. If 6 balls are drawn in this way, find the probability that

(1) all will bear 'X' mark.
(if) not more than 2 will bear "Y' mark.
(ii)) at least one ball will bear "Y' mark.

(iv) the number of balls with 'X' mark and 'Y' mark will be equal.

In a hurdle race, a player has to cross 10 hurdles. The probability that he will

5
clear each hurdle is g . What is the probability that he will knock down fewer
than 2 hurdles?

A die is thrown again and again until three sixes are obtained. Find the probabil-
ity of obtaining the third six in the sixth throw of the die.

If a leap year is selected at random, what is the chance that it will contain 53
tuesdays?

An experiment succeeds twice as often as it fails. Find the probability that in the
next six trials, there will be atleast 4 successes.

How many times must a man toss a fair coin so that the probability of having
at least one head is more than 90%?

In a game, a man wins a rupee for a six and loses a rupee for any other number
when a fair die is thrown. The man decided to throw a die thrice but to quit as
and when he gets a six. Find the expected value of the amount he wins / loses.

Suppose we have four boxes A,B,C and D containing coloured marbles as given
below:

Box Marble colour
Red White Black
A 1 6 3
B 6 2 2
C 8 1 1
D 0 6 4

One of the boxes has been selected at random and a single marble is drawn from

it. If the marble is red, what is the probability that it was drawn from box A?, box B?,
box C?
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Assume that the chances of a patient having a heart attack is 40%. It is also
assumed that a meditation and yoga course reduce the risk of heart attack by
30% and prescription of certain drug reduces its chances by 25%. At a time a
patient can choose any one of the two options with equal probabilities. It is given
that after going through one of the two options the patient selected at random
suffers a heart attack. Find the probability that the patient followed a course of
meditation and yoga?

If each element of a second order determinant is either zero or one, what is the
probability that the value of the determinant is positive? (Assume that the indi-
vidual entries of the determinant are chosen independently, each value being

1
assumed with probability E ).

An electronic assembly consists of two subsystems, say, A and B. From previ-
ous testing procedures, the following probabilities are assumed to be known:

P(A fails) =0.2
P(B fails alone) = 0.15
P(A and B fail) = 0.15
Evaluate the following probabilities
() P(A fails|B has failed) (i) P(A fails alone)
Bag I contains 3 red and 4 black balls and Bag II contains 4 red and 5 black balls.
One ball is transferred from Bag I to Bag Il and then a ball is drawn from Bag II.

The ball so drawn is found to be red in colour. Find the probability that the
transferred ball is black.

Choose the correct answer in each of the following:

17.

18.

19.

If A and B are two events such that P(A)# 0 and P(B | A) = 1, then

(A) AcB (B) Bc A (C) B=¢ (D) A=0o

If P(A|B) > P(A), then which of the following is correct :

(A) P(BJA) < P(B) (B) P(AnB)<P(A).P(B)

(C) P(BJA) > P(B) (D) P(BJA) = P(B)

If A and B are any two events such that P(A) + P(B) — P(A and B) = P(A), then
(A) PBIA) =1 (B) P(AIB) =1

(C) P(BJA) =0 (D) P(A[B) =0
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Summary
The salient features of the chapter are —

@ The conditional probability of an event E, given the occurrence of the event F
. P(ENnF)
is givenby P(E |F)= PE P(F)#0
¢ 0LP(EF)<, P (E|F)=1-P (E|F)
P ((E U F)|G)=P (E|G) + P (FIG) - P (En F)|G)
¢ P(EN F)=P(E)P (FE),P (E)#0
P(En F)=P (F) P(E|F),P (F)#0
¢ IfE and F are independent, then
P(En F)=P(E)P (F)
P (E[F)=P (E),P (F)# 0
P (FIE) =P (F), P(E) # 0
& Theorem of total probability

Let {E , E,, ...,E ) be a partition of a sample space and suppose that each of
E,, E,, ..., E, has nonzero probability. Let A be any event associated with S,
then

P(A) =P(E)) P (AIE) + P (E) P (AIE) + ... + P (E ) P(AIE )

¢ Bayes' theorem If E, E, ..., E are events which constitute a partition of
sample space S,i.e.E,E , ..., E_arepairwise disjointandE 4 E 4 .4 E =S
and A be any event with nonzero probability, then

P(E, | A)= nP(Ei)P(AIEi)
> P(E)PAE))
j=l

¢ A random variable is a real valued function whose domain is the sample
space of a random experiment.
& The probability distribution of a random variable X is the system of numbers

X g X, X, X

PX) P, P, P,



586

MATHEMATICS

¢ Let X be arandom variable whose possible values X, X,, X, ..., X_occur with

1272273

probabilities p,, p,, p,, ... P, respectively. The mean of X, denoted by L, is

n
the number z %P .

i=l
The mean of a random variable X is also called the expectation of X, denoted
by E (X).
Let X be a random variable whose possible values X, X, ..., X occur with
probabilities p(X ), p(X,), ..., P(X ) respectively.
Let u = E(X) be the mean of X. The variance of X, denoted by Var (X) or

G2, is defined as o = Var(X)=Z(Xi —w)’ p(%)
=

or equivalently 6,>=E (X — p)?
The non-negative number

o, =[Var(X)=[> (x=w)’ p(x)
i=1

is called the standard deviation of the random variable X.
Var (X) = E (X?) - [E(X)]?
Trials of @ random experiment are called Bernoulli trials, if they satisfy the
following conditions :
(i) There should be a finite number of trials.

(ii) The trials should be independent.

(ii)) Each trial has exactly two outcomes : success or failure.

(iv) The probability of success remains the same in each trial.
For Binomial distribution B (n, p), P (X=x) ="C q ™ p,x=0, L,..,n
(@=1-p

Historical Note

The earliest indication on measurement of chances in game of dice appeared

in 1477 in a commentary on Dante's Divine Comedy. A treatise on gambling
named liber de Ludo Alcae, by Geronimo Carden (1501-1576) was published
posthumously in 1663. In this treatise, he gives the number of favourable cases
for each event when two dice are thrown.
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Galileo (1564-1642) gave casual remarks concerning the correct evaluation
of chance in a game of three dice. Galileo analysed that when three dice are
thrown, the sum of the number that appear is more likely to be 10 than the sum 9,
because the number of cases favourable to 10 are more than the number of
cases for the appearance of number 9.

Apart from these early contributions, it is generally acknowledged that the
true origin of the science of probability lies in the correspondence between two
great men of the seventeenth century, Pascal (1623-1662) and Pierre de Fermat
(1601-1665). A French gambler, Chevalier de Metre asked Pascal to explain
some seeming contradiction between his theoretical reasoning and the
observation gathered from gambling. In a series of letters written around 1654,
Pascal and Fermat laid the first foundation of science of probability. Pascal solved
the problem in algebraic manner while Fermat used the method of combinations.

Great Dutch Scientist, Huygens (1629-1695), became acquainted with the
content of the correspondence between Pascal and Fermat and published a first
book on probability, "De Ratiociniis in Ludo Aleae" containing solution of many
interesting rather than difficult problems on probability in games of chances.

The next great work on probability theory is by Jacob Bernoulli (1654-1705),
in the form of a great book, "Ars Conjectendi" published posthumously in 1713
by his nephew, Nicholes Bernoulli. To him is due the discovery of one of the most
important probability distribution known as Binomial distribution. The next
remarkable work on probability lies in 1993. A. N. Kolmogorov (1903-1987) is
credited with the axiomatic theory of probability. His book, ‘Foundations of
probability’ published in 1933, introduces probability as a set function and is
considered a ‘classic!’.

—_— g —
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|EXERCISE 7.1|
1.
_lcoszx 2, _Sln3x 3-
2 3
1 1 4
—(ax+b)’ . ——cos2x——e>* .
3a( ) 5 2 3 6
3 3 2
x——x+C 8. ﬂ+—+cx+C 9.
3 3 2
)C2
?+log|x|—2x+C 11.
) 13
7x2 +2x2 +8Jx+C 13.
22 22
—x2——=x2+C 15.
3 5
x> =3sinx+e*+C 17.
tan x + sec x + C 19.
2tanx -3 secx + C 21.
A

|EXERCISE 7.2 |

log(1+x)+C 2.

1

cos (cos x) + C 5. —4—cos2(ax+b)+C
a

3 5 3

2 2
—(ax+b)2 +C 7.
3a

1
5(1og|x|)3+c 3.

12x

3x

4
—e +x+C
3

3

2
—x’+e* +C
3

2
x—+5x+i+C
X
3
X 4x+C
3

7 50003
—x24+—-x2+2x2+C
7 5

3
2 10 =
—x3+3cosx+—0x2+C
3 3

tanx —x + C

C

log|1+logx|+C

2 Lo >
—(x+2)? = =(x+2)2+C
5( ) 3( )
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32.

34.
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3
%(1+2x2)2 +C 9. g(x2+x+l)2+C

2
g1/x+4(x—8)+c

7

1
7

1-m
(log x) N
1-m

1
2e”

1

E1og (e +e)+C
1

—Ztan (7-4x)+C

1
Elog|2sinx+3cosx|+C

1 =
2sin/x +C 27. g(sinzx)2 +C

1 .
E(log sinx)’+C  30. _ log |1+cosx| +C

1
f——log|cosx+sinx|+C
2 2
2 /tanx +C

1
—Zcos(tan TxhH+C

B

4
—(x’=1)3 +i(x3—1)3 +C
1 2
C 15. —glogl9—4x |+C

5 +C 18. etan'x+c

1
35. §(1+logx)3+C

13.

19.

21.

23.

25.

28.

31.

33.

36.

38.
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210g‘\/;—1‘+c

—;32+C
18(2+3x7)

1

_62x+3 +C
log(e*+e™)+C

1
Etan(2x—3)—x+C

%(sin -l x)2 +C

_r .,
(1-tanx)

2 /1+sinx +C

1
1+cosx

+C

1
f——log|cosx—sinx|+C
2 2
1 3
§(x+log x) +C

D
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|EXERCISE 7.3
x 1 1 1
Z _ sin(4x+10)+C 2. ——cos7x+—cosx+C
2 8s1n( X ) o >
1|1 1 1
—| —sin12x+x+—sin8x+—sin4x [+C
412 8 4
1cos(2 +1)+lcos3(2 +1)+C 5 1cos"’x 1cos4x+C
-—— X — X L= =
2 6 6 4
11 1 1
—| —cosbx——cos4x——cos2x |+C
416 4 2
11 1
—| —sin4x——sinl12x |+C 8. 2tan£—x+C
21 4 12 2
1 1
x—tan£+C 10. 3—x——sin2x+—sin4x+C
2 8 4 32
1 1 .
%+— sin4x+—sin8x+C 12. x-sinx+C
. _;_{_C
2 (sinx + x cosa) + C 14. COS X +5inx
| 1 | I
gsec 2x—5se02x+C 16. gtan x—tanx+x+C
sec x — cosec x + C 18. tanx + C
1
log|t:’:1nx|+5tan2 x+C 20. log|cosx+sinx|+C
2 1 cos(x—a
XX e 22. = I g| Ga)l |
2 2 sin(a—b) |cos(x—b)|
A 24. B
|EXERCISE 7.4|
1
tan”' x* + C 2. Elog 2x++1+4x*|+C
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1
log| - |+C 4. 1Sin715_x+c
2= x4 —dx+5| 5503
1 |1+x°
3 tan "'v2 x> +C 6. —log x3 +C
242 6 —x
1
Vx> —1-log x+\/x2—1‘+C 8. glog X +x®+a’|+C

log

tanx+«/tan2x+4‘+c 10. log‘x+1+,/x2+2x+2‘+c
ltan_1(3x+1)+c 12. Sin71 )C_+3 +C

6 2 2

x—§+\/x2 —3x+2(+C 14 sin™! [Mj +C

2 ' J41
x—a—+b+\/(x—a)(x—b)
2
22x2 +x=3+C 17. +Jx*—1+2log

glogbx2 + 2x+1‘ —itan_1 [ﬂj +C

32 V2
61/ x> —9x+20 +341log x—%+«/x2 —9x+20

)
—Jdx—x* +4sin™ [XTJ +C

X2 +2x+3+ log x+1+\/x2+2x+3‘+C

x—l—\/g
x—1+\/8

log

+C

log

x+\/x2—1‘+C

+C

+C

%log‘ x2—2x—5‘+%log
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23, Syx* +4x+10 —7log

X4 24417 +4x+10‘ +C

24. B 25. B
| EXERCISE 7.5|
(x+2)° 1, [x-3

1 _
1. log it +C 2. 6logx_i_3+C
3. log|x—1|—510g|x—2|+410g|x—3|+C
4. %log|x—1|—2log|x—2|+%log|x—3|+C

X 3
5. 4log|x+2|-2log|x+1/+C 6. - +log|x|—log|l -22+C
7 llog|x—1|—llog(x2+1)+ltan_1x+C
) 4 2

2 |x-1 1 1 |x+1 4

| - “og| X ———
e e 9. Flog o 7

5 1 12
10. Elog|x+1|—Elog|x—1|—?log|2x+3|+c

5 5 5
11. g1og|x+1|—Elog|x+2|+glog|x—2|+c

X1 3
12. 7+Elog|x+l|+510g|x—l|+c

1
13. —log [x=1[+7log (I +%) + tanx + C
7 L rogl 1

14. 3log|x—2|+m+c 15. 4log 1 2tan x+C

1 n _.
16. —logl——/+C 17. log2=804 ¢

n x'+1 1—sinx

L x 1. (x+1)

x+itan" 2 Bant 4 —lo +C
18. NG NG ) 19. 3 ng2+3)
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1 - X1
—log|——[+C 721. log ¢ +C
4 X : e’
B 23. A
EXERCISE 7.6/
X 1.
—xcosx+sinx+C 2. —50083x+§sm3x+c
2 2
e (R—2x+2)+C 4. Tlogx-1-+C
2 4
2 2 3 3
x—log2x—x—+C 6. x—logx—x—+C
2 4 3 9
2 2
- 1
Lo psinx+ ™" 0 8 T =T lan xec
4 4 2 2 2
-1
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4 4
. )2 2 .ol
(sm x) x+241—x" sin” x —2x+C

- [\/l—xz cos'x +x]+C 12.

1

xtan_lx—alog(1+x2)+c 14.

3 3
X X
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L3 J g 9 16.
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+C
1+x 18.
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X
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(2sinx—cosx)+C 22.

x tan x + log |cosx| +C

2 2 2
X X X
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X
e" tan—+C
2

e)C

C
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2x tan"'x — log (1 + x*) + C

. B
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|EXERCISE 7.7|

1 1 1
1. Ex\/4—x2+2sin_1§+c 2. Zsin_12x+5x\/1—4x2 +C

2
3. (x; ) x*+4x+6+log x+2+\/x2+4x+6‘+C
x+2) 3 2
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U 2 e
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1 35 19
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2 e 2
EXERCISE 7.9
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1 ) T
(0] —_
8. ng_\/g) 9 5
11 Log2 12. L
© 5 g2 © 2
1 3
—log6+—=tan \/g
14. Flogb+—7
5 5 3
16. 5_—(91 2 —j
H 7O T8,
31
18. 0 19. 310g2+?
21. D 22. C
EXERCISE 7.10
64 T
2. 231 3. E—logZ
. ® ] L 21+517
3 SRR
2 2
e (e"-2)
g, —— = 9. D
4
|[EXERCISE 7.11
, , , T
T4 T4 T4
_
6. 9 T i+ h(n+2)
1612 | n
. — . —log— . =
ST 10, 5loe3 s
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12. & 13. 0 14. 0 15. 0
a

16. —mlog 2 17. B 18. 5 20. C

21. C

MiSCELLANEOUS EXERCISE ON CHAPTER 7

2

llo
1. > g

2

o) 3 3
- s 2 _ 2
+C 2. 3@—b) {()Ha) (x+b) }+C

1-x

1
o !
Ry (b G . _[1+i4)4+c
a X X

1 1 1

5. 2Jx=3x3 +6x° —6log(1+x6)+C

1 1 2 3 1 X
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. . by
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9. sinl[smx)+C 10. —lsin2x+C
2 2
1
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sin(a— b) |cos(x+a)| 4
1+e* 1 1 X
lo +C —_ -l _Z _1_+
13. gL2+exJ 14. 3t:':m X 6tan 5 C
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15. _ZCOS x+C 16. Zlog(x +1) +C

[f (ax+Db)]""! 2 [sin(x+a)
17. ———+C 18 +C
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—210g|x+1|—%+310g|x+2|+c
X

T T
62 26. §
z 28. 2sin_1@
6 2
42 1
il . —log9
3 0508
T T
——1 2. —(m=-2
5 3 2( )
19 w. Y1)
2 3 e
A 42. B
D 44. B
|EXERCISE 8.1|
14 32-8+/2
— 2. 16-442 3. 32-82
3 3
T
121 5. 61 6. —
3
afz_, 2 !
9
3 11. 83 12. A 13. B
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13.
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11.
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V29 22
—+—sin" ——
6 4 3
21
2
B

4.

7.

B

|EXERCISE 8.2 |

Miscellaneous Exercise on Chapter 8

L7

i 3

1

g 3.
8 a’

e 7
b

%(“‘2) 10.
7 14.
D 17.

Order 4; Degree not defined

Order 2; Degree 1
Order 2; Degree 1
Order 3; Degree 1
Order 2; Degree 1
D

w3

O pjla o

(i) 624.8
4. 9 5. 4
3
. —(n=-2
8 2( )
11. 2 12 1
. -3
8 4 3) 32
18. C 19. B
EXERCISE 9.1
2. Order 1; Degree 1
4. Order 2; Degree not defined
6. Order 3; Degree 2
8. Order 1; Degree 1
10. Order 2; Degree 1
12. A
EXERCISE 9.2
12. D
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EXERCISE 9.3 |
1. y=0 2. xy Yy +x()P-yy =0
3. y//_y/_6y=0 4 y//_4y/+4y=0
5. y"-2y+2y=0 6. 2xyy + x% =y?
7. xy=2y=0 8. xyy+x(y)2-yy=0
9. x+x()2 -y =0 10. (2-9) ()2+x2=0
11. B 12. C
EXERCISE 9.4|
X
1. y=2tan5—x+C 2. y=2sin(x+C)
3. y=1+Ae" 4. tanxtany=C
3
_1 X
5. y=log(et+e*)+C 6. tan y=x+?+C
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9. y=xsinx+ {12 +C
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y—zlog[(x+1) (x> +1) ]—Etan x+1

11.

12.

14.
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18.
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| (ﬁ-l] 13
y=—log| —— |—<log—
2 x

10. tany=C(1-¢Y

-2
cos(y )=a
X

798y 13.
Yy =sec x 15. 2y —1=e"(sinx—cosx)
y—x+2=log (x* (y +2)%) 17. y*»=x*=4
1
(x+4)2=y+3 19. (63r+27)3
6.93% 21. Rs 1648
2log?2
_£o8s 23. A
lo [11)
10
EXERCISE 9.5

-y

(x—y)*=Cx ex

2.y :xlog| x|+Cx
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1
tan”' (l}alog (x*+y)+C

4. X2+y2=Cx

X
|x+\/_y|
=1 +C
i v R L e
Xy COS —‘ =C 8. X[l—cos(%j}:Csin(%j
= log Z‘ -1 10. ye;+x C
X
log (x* +y?) + 2 tan™! % g+log2
y+2x=3"y 13. cot( j log|ex|
X
cos(%)zlog|ex| 15. y= Tloald log|x|(x¢0 X#e)
C 17. D
|EXERCISE 9.6|

1
.y = §(2sinx—cosx)+Ce‘2"

4
X
=—+C
Xy 4

y=(tanx — 1) + Ce™

ylogx:_—2(1+log |x|)+C
X

1
y=——cCcotx+—
X xsinx

2. y=e*+ Ce™
4. y(secx+tanx)=secx+tanx—x+C
X2 2
6. y=—:(4log|x|—1)+Cx"
y="g (4logal-1)
8. y=(1+x)"" log|sinx|+C(1+x*)"
10.

x+y+D=Ce

12. x=3y"+Cy



13. y=cosx—2cos’x
15. y=4sin® x—2sin’x
17. y=4-x-2¢"
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T
14. y (1 +x%) =tan™! x — 2

16. x+y+1=¢"

18.

C 19. D

Miscellaneous Exercise on Chapter 9

1. (i) Order 2; Degree 1

(@iii) Order 4; Degree not defined

(i) Order 1; Degree 3

3.y 4xy So e+ P=G-y A +0))
- o secx
6. sin”'y +sin'x=C 8. cosy= NG
T X
9. tan‘1y+tan‘1(e")=5 10. e¢’=y+C
11. log [x—y|=x+y+1 12. yer =Jx+0)
2 7'[2 2)C+1
13. ysinx=2x —7(sinx¢0) 14, y=logl——, x#-1
15. 31250 16. C
17. C 18. C
EXERCISE 10.1|

1. In the adjoining figure, the vector OP represents the required displacement.

N Scale

N —

10km

P
o/ 40km
/€ >E

W<o
v
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2. (1) scalar (i) vector (i) scalar (iv) scalar (v) scalar
(vi) vector
3. (1) scalar (i) scalar (i) vector (iv) vector (v) scalar

4. (i) Vectors @ and b are coinitial

(i) Vectors b and d are equal

(iii) Vectorsa and ¢ are collinear but not equal

5. (1) True (i) False (i) False (iv) False
|EXERCISE 10.2|
1. |a[=3,|b|=Ve2,|¢=1
2. An infinite number of possible answers.
3. Aninfinite number of possible answers.
4. x=2,y=3 5. —=7and 6; —7{and 6
r L;-}-L}-Fi]g
O 4=k AN RN
1~ 1, 14 1~ 1 -
— i+ —jt+—k —i+—k
S BB R
40{_8}+161€ 1 2 3
T RN TRV 120 e i Vi
13 -1_22 5. ) i+ e Gy araak
C T3 . (@) 3 31 3 (i) -3i+3k
16. 3i+2j+k 18. (O 19. (D)
|EXERCISE 10.3|
T
1. — 2. cos_l[éj 3.0
4 7
.. 2 o, 1642 22 7. 6laf +11a.5-35[p|
. \/m . 3ﬁ 93ﬁ . |Cl| +1la.b— ‘ ‘

8. lal=1[p|]=1 9. J13 10. 8
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~ -3
Vector b can be any vector 13. X
Take any two non-zero perpendicular vectors G and b

o 10
5| Tion 18. (D)

|EXERCISE 10.4|
. Tr—1 — — . Ty T o
19v2 3' 733 32272
27 . n
35 6. Either |al=0 or [b|=0

et 10. 1542 11. (B) 12. (C)
2

Miscellaneous Exercise on Chapter 10

o4

¢+1A.
l —
2]

xz_xl,)’2_)’1’22_219\/()%_x1)2+()’2_)’1)2+(22_21)2
33,
) J

No; take G@»> b and ¢ to represent the sides of a triangle.

_5,‘\
—i+
2

1 3 N 10 . 3 a 3 A 2 A
+ 3 /o34 Y10, ;_ =
~ I~ A n
2:3 9. 34 +5b 10. 7(31—6J+2k);11\/§
1 ~ A A
5(160i -5j+70k)13. A=1 16. (B)

(D) 18. (O 19. (B)
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|EXERCISE 11.1|
0,__1,L 2. il,il,il 3. __9727__2
22 3B B
2 2 3.2 3 2 4 5 -l
V17177177 1717 T a2 s Ve

|EXERCISE 11.2 |

i+27+3k+A(31+2j—-2k),whereAis areal number

S
Il

2i-]+4 k+ A (f+2}—l€)andcartesianfonnis

Ny
Il

x=2 y+1 z-4
2 -1
2 y—-4 z+45
s 6
F=(5i—-47+6k)+ABi+7]+2k)

X

wl+ =

Vector equation of the line: 7= A(5i -2 ]+ 3k );

y _Z

x
Cartesi tion of the line: - = —— =

artesian equation of the line: 7 = == ==
Vector equation of the line: ~ 7=3; =2 — 5k+M(11k)

x=3 y+2 z+45
0 0 11

(i) 6= cos (Qj (i) 6= cos” 8
21 53

i 6= cos™' _26 (i) 6= cos™ (2)
9./38 3
L 32 15. 2429

1

Cartesian equation of the line:

P 14.

s‘ool\)
©

3
Jio 17.
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EXERCISE 11.3|
a s U, 1, ( \/59 3 s 3 b \/g

2 3 -1 5

8
, , ; d 0,1,0; =
© 7 iz iz 4 @ 5

?{3”5]—61«]:7

70
(@) x+y—-z=2 (b) 2x+3y-4z=1
© -20x+B-Dy+Q@2s+1nz=15
24 36 48 18 24
o (3 3% o (05 %)

1 1 1 -8
© (55555) @ (O’?O)

(@) [F-—(G-2k)-G+j-k)=0; x+y-z=3
b) [F=({+4]j+6k)]-(i-2]j+k)=0; x-2y+z+1=0

(a) The points are collinear. There will be infinite number of planes
passing through the given points.
(b) 2x+3y-3z=5

5
E, 5,-5 8. y=3 9. Tx-5y+4z-8=0

Fo(381+68]+3k) =153 11. x—z+2=0

J731

2
(a) cos™ (gj (b) The planes are perpendicular
(c) The planes are parallel (d) The planes are parallel
(e) 45°
3 b 3
(a 3 (b) 3

() 3 d 2
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Miscellaneous Exercise on Chapter 11

3. 90° 4. S=2=2 5. 0°

: 1 0 0

6. k="10 7

7 O F=i 42 43k+A(i+2]-5k)
8. x+y+z=a+b+c 9. 9

17 -13 1 23

o 0,_,_ o _909_j . —
10 ( > 2) 11 (3 3 12. (1,-2,7)

13. Tx—8y+3z+25=0 14 R
. X —8y+ 3z + = .p—201‘601‘3
15. y-3z+6=0 16. x+2y-3z-14=0
17. 33x+45y+50z-41=0 18. 13

19. F={+2]+3k+A(=3{+5]+4k)
20. F=i+42]-4k+AQ21+3]+6k) 22. D
23. B

|EXERCISE 12.1

1. Maximum Z = 16 at (0, 4)
2. MinimumZ =- 12 at (4, 0)

5. Masimmz = 2 5 (2.8)
. aximum Z = 19 at 19919

o 3 1)
4. Minimum Z =7 at [2,2
5. Maximum Z = 18 at (4, 3)

6. Minimum Z = 6 at all the points on the line segment joining the points (6, 0)
and (0, 3).

7. Minimum Z = 300 at (60, 0);

Maximum Z = 600 at all the points on the line segment joining the points (120, 0)
and (60, 30).

8. Minimum Z = 100 at all the points on the line segment joining the points (0, 50)
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and (20, 40);
Maximum Z = 400 at (0, 200)
7 has no maximum value

No feasible region, hence no maximum value of Z.

EXERCISE 12.2

8 1
Minimum cost = Rs 160 at all points lying on segment joining (5 , 0) and [2,5) .

Maximum number of cakes = 30 of kind one and 10 cakes of another kind.
(1) 4 tennis rackets and 12 cricket bats

(i) Maximum profit=Rs 200

3 packages of nuts and 3 packages of bolts; Maximum profit = Rs 73.50.

30 packages of screws A and 20 packages of screws B; Maximum profit
=Rs 410

4 Pedestal lamps and 4 wooden shades; Maximum profit = Rs 32

8 Souvenir of types A and 20 of Souvenir of type B; Maximum profit
=Rs 160.

200 units of desktop model and 50 units of portable model; Maximum profit
=Rs 1150000.

Minimise Z = 4x + 6y

subject to 3x + 6y = 80, 4x + 3y > 100, x > 0 and y > 0, where x and y denote the
number of units of food F, and food F, respectively; Minimum cost = Rs 104

100 kg of fertiliser F, and 80 kg of fertiliser F,; Minimum cost = Rs 1000
(D)

Miscellaneous Exercise on Chapter 12
40 packets of food P and 15 packets of food Q; Maximum amount of vitamin A
=285 units.
3 bags of brand P and 6 bags of brand Q; Minimum cost of the mixture = Rs 1950
Least cost of the mixture is Rs 112 (2 kg of Food X and 4 kg of food Y).



608

10.

11.

12.

14.

MATHEMATICS

40 tickets of executive class and 160 tickets of economy class; Maximum profit
=Rs 136000.

From A : 10,50, 40 units; From B: 50,0,0 units to D, E and F respectively and
minimum cost=Rs 510

From A: 500, 3000 and 3500 litres; From B: 4000, 0, O litres to D, E and F
respectively; Minimum cost = Rs 4400

40 bags of brand P and 100 bags of brand Q; Minimum amount of nitrogen
=470 kg.

140 bags of brand P and 50 bags of brand Q; Maximum amount of nitrogen
=595 kg.

800 dolls of type A and 400 dolls of type B; Maximum profit = Rs 16000

|EXERCISE 13.1|
2 1 16
== == . P(AB)=—

P(EIF) = 7. P(FIE) = 2. P(AB)=—
. () 032 (i) 0.64 (iii) 0.98
11

26

.2 L4 L2
O i) - (i)
1 3 6

(6] 5 (ii) 7 (iii) 7
O (i) 0

1 9. 1 10. @ =, ®) =
5 - (@ 3’ (b) 9
11 102 31
W33 i 73 i 73
1 1 LS

O 5 i) 3 5

1

— 15. 0 16. C 17. D
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EXERCISE 13.2
L3 25 “
©25 102 91
4. A and B are independent 5. A and B are not independent
6. E and F are not independent
. | I
O T (i) P=3
8. (1) 0.12 @) 0.58 @) 0.3 (iv) 04
3
9. 3 10. A and B are not independent
11. () 0.18 @ 0.12 @i 0.72  @{v) 0.28
L7 s 16 20040
-3 - (@) gy~ () gy (i) o
14. (G 2 i) & 15. (), (i 16 ! b 1 1
OENCIE, SNONCY S @30 3.© 5
17. D 18. B
|EXERCISE 13.3|
L1 , 2 L9 L2
) 3 © 13 " 13
5. 2 e. 2 . L . L
T 133 ) RY) T4
9 2 10 3 11 2 12 1
9 11 T34 T 50
13. A 14. C
|EXERCISE 13.4
1. (ii), (iii) and (iv) 2. X=0,1,2;yes 3. X=6,4,2,0
4. ()| X 0 1 2
ool L1 L] 1
X) 4 2 4
i | X 0 1 2 3
ool L] 3] 3] 1
X) 8 8 8 8
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i | X 0 1 2 |3 4
oy | L L [3 L |1
2y 16 | 4 8 |4 |16
5.0 | X 0 1 |2
4 4 |1
PROTS 9|79
i [ X [o 1
P(X 211
X) 36 | 36
6 X 0 [ 1 2 3 [ 4
Pex 256 (256 | 96 | 16 | 1
2y 625 | 625 [625 | 625| 625
7. X 0 1 [ 2
NN
X) 16 | 16 | 16
. 1 . 3 17
8. @G k=— 1 P(X<3)=— 1 P(X>6)=—
@) 0 i) P( )10 (i) P( )100

iv) P(0<X<3) =i
10

9. (a) k:% (b) P(X<2):%,P(XSZ):I,P(XZZ):l

2
10. 15 11 ! 12 kad
. L -3 -3
13. Var(X)=5.833,S.D=2.415
14. X 14 | 15 16 | 17 18 19 | 20 | 21

F2AN IS 2R IS R VI (RRZA
15 | 15 15 [ 15 15 15 15 | 15
Mean = 17.53, Var(X) =4.78 and S.D(X) =2.19
15. E(X)=0.7 and Var (X) = 0.21 16. B 17. D

P(X)
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|EXERCISE 13.5|
1 63
U i) oy
s (35
“ 20120
45 243
@ 575 () To24

(i) (0.95)*x 1.2 i) 1-(0.95)x%x1.2

@v) 1-(0.95y

()

1 20
( j [20C,, + °C 5 +..c4+ 2Cyy |

7. | <
2
1
243
1_[2)” ) 1(2}“9 1&(2}“9
(@) 100 ®) 2\100 © 100\100
1[5)5 b ﬁ@ 15, 2xY
1216 T 18\6 © 10"
C 15. A
Miscellaneous Exercise on Chapter 13
@ 1 (i 0
1 1
@
21

10
1->21°C,(0.9) (0.1

r=7

. (3)6 } 7(;)“ 1_(3)6 . 864
W |5 @ 7\5) @) 13 ) 3753
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] 5" 625 g 2
© 26’ © 23328 7
9 31(2j4 10. n>4 11 =
N s = " 216
12 123 13 14 14 3
1575715 ©29 T 16
16

15. () 05 () 0.05 16. T

17. A 18. C 19. B

—_— % —
L
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CHAPTER 7

7.6.3 I(px+q) ax?® + bx + c dx.

We choose constantsAand B such that

d
px+q A{d—(ax2+bx+c)}+8

X
= A(2ax +b) +B
Comparingthe coefficients of x andthe constant terms on both sides, we get

2aA = pandAb +B =¢

Solving these equations, the values of A and B are obtained. Thus, the integral
reduces to

AJ.(Zax+b)\/ax2+bx+cdx+BJ. ax®+ bx + c dx
= Al +BI,
where I, = .|.(2ax+b) ax®+ bx + ¢ dx
Put ax? + bx + ¢ = t,then (2ax + b)dx = dr

So I

1

2 (ax? + by +¢)7 4 C
§(c1x+x+c)+l

Similarly, I J-\/ax2 + bx + ¢ dx
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isfound, using the integral formulae discussed in [7.6.2,Page 328 of the textbook].

Thus I(px +g)Vax® + bx + ¢ dx isfinallyworkedout.

Example 25 Find Ix 1+ x— x> dx

Solution Followingthe procedure asindicated above, we write

A[i(1+x—x2)}+8

dx

=
1

A(l-2x)+B
Equatingthe coefficientsof x andconstant terms on both sides,

We get - 2A=1andA+B=0

1 1
Solvingthese equations, we get A = ) and B :5' Thusthe integral

reduces to

jx 1+ x—x’dx :—%I(l—Zx) 1+x—x2dx+%_[ 1+ x —x°dx

1 1

= —EI1+EI2 1)

Consider I, = I(1—2x)V1+x—x2dx
Put 1+x—x*=1¢then (1- 2x)dx = dt

3
2

1
5 2
Thus I1=J.(l—2x) 1+ x—x"dx = Jtzdtzgt +C,

2 = :
§(1+ x —x*)Z +C, where C,_is some constant.
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y4 AN
—| |5
Further, consider I, = J-qu; —x? dx —J;/Z—[\x —%j dx

1
Put X—E =1 Then dx=dt

N
T herefore, I, = I [T —t°dt
= —t i—t2+£-ism‘1 21 +C,
4 2 4
_o1(2x-1) 5_( _l)2+55 af2x-1) )
-2 2 4 2 8 5 ?

where C, is some constant.

Puttingvalues of I and I, in (1), we get

3
J.X’\/1+x —xdx = —%(1+ x—xz)? +%(2x — D)L+ x - x?

where c = —— isanother arbitrary constant.
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Insertthe followingexercises atthe end of EXFRCISE7.7 as follows:
12 xafx+x2 13 (x+DvV2x* +3 14 (x +3)\/3—4x—x’

Answers

3
12. %(xux)?—(z“l)” tx, 6|0g|x+;+\/x T x|+C

x+,’x2+i
2

1 2% 7 . x+2 (x+2)\/3 4x — x?
14, —3(3—4x—x) +25|n (\/7)

+ C

KR
13. %(2x2+3)2+%\/2x2+3+32{2—mg

CHAPTER 10

10.7 Scalar Triple Product

Let a,b and ¢ be any three vectors. The scalar product of aand (b x &), i.e.,
a-(bx ¢) iscalledthescalar triple product of d,b and ¢ inthisorder and is denoted

by [a,b,¢](or [abE]). Wethushave
[a,E, E]: C_i(EXE)

Observations AT

1. Since (5 x¢) isavector, g-(b x¢) Isa A

scalar quantity, i.e. [a, b, ¢] is a scalar
quantity. 7
2. Geometrically, the magnitude of the scalar |9

tripleproduct isthe volume of a parallelopiped /B V
formedby adjacent sides given by thethree © 3 C
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vectors a, b and ¢ (Fig.10.28). Indeed, thearea of the parallelogram forming

the base ofthe parallelopiped is |l; X 5| .The height isthe projection of g along

the normal to the plane containing p and & which isthe magnitude of the

component of g inthe directionof hx ¢ i.e., |a'Eb ><c)l.So therequired
|(b><E)|

a.(bx2)| R
volumeof the parallelopipedis||l;—| bxc |:|d.(b><E)|,

<)
\f G=ayi+a,j+ak, b=bi+b,j+bk and ¢=ci+c,j+csk,
then

k

by

G €, G

S
X
o)
11
S =~
S <

= (b203 - bscz) {+ (b3cl - b1c3) JA b (blcz - bZCl) kA

and so

d.(l;xc?)z a,(b,c, —byc,)+a,(byc,—bc;)+a,(bec, —b,c,)

a, da; da;
=|b, b, b

G C; G
If Zz,l; and ¢ be anythree vectors, then

[d,b, ¢1=1b,¢,al=1¢,a,b]
(cyclicpermutation of three vectors does not changethe value of the scalar
tripleproduct).

A~

Let G = ai+a,j+a,k, b=bi+b,j+bk and ¢ =ci+c,J,k.
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Then, just by observation above, wehave
a 4; a4
[Zial;yg]: bl bZ b3
€1 C G
-4 (bzcs - bscz) ta, (b3cl - blc3) ta, (bICZ - bZCl)

= bl (ascz - azcs) + bz (alcs - asc1) + bs (azcl - alcz)

b b b
=6 6 G

a 4, da;
=[b,¢,d]

Similarly, the reader may verify that

Hence [a,b,e1=[b,c,a]=[C,a,b]
Inckeed,

=[d,b,é]1=-1[ad, ¢ b]. Indeed
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=5.0=0. (as @xa=0)
Note: Theresultin 7 above is true irrespective of the position oftwo equal vectors.

10.7.1 Coplanarity of Three Vectors

Theorem 1 Three vectors @, b and ¢ are coplanar ifandonly if g .(Exg) =0.

Proof Suppose first that the vectors a, b and ¢ arecoplanar.

If 5 and ¢ are parallel vectors, then, b x &= §andso z-(hx &) =0.

—

If 5 and ¢ are not parallel then, since @,b and ¢ are coplanar, b x ¢ s
perpendicularto a.

S0 G-(bx¢)=0.

Conversely, supposethat g -([;x ¢)=0. If 4 and } x ¢ are both non-zero,

then we conclude that g and j x ¢ are perpendicular vectors. But b x¢ is

perpendicular toboth f and ¢. Therefore, dandb and ¢ mug lieinthe plane,i.e.

they arecoplanar. If g =0, then g iscoplanar withanytwovectors, in particular with

p and g.If (Exg)zo , then p and ¢ are parallel vectors andso, g, b and c

are coplanar since any two vectors always lie in a plane determined by them and a
vector which is parallel to any one of it also lies in that plane.
Note: Coplanarity of four points can ke discussed using coplanarity of three vectors.

Indeed, the four pointsA, B, Cand D are coplanar if the vectors AB,AC and AD
are coplanar.
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Example 26 Find .(bx¢), if G=2i+ ) +3k, b=—i+2j+k and ¢ =3 + ] +2% .

2 1 3
Solution We have @.(hx&)=|-1 2 1|=-10.
3 1 2

Example 27 Showthat the vectors
G=1i-2j+3, b=-2i+3j—4k and ¢=i 3] +5k are coplanar.

1 -2 3
Solution We have d@.(b x¢)=|-2 3 —4=0.
1 -3 5

Hence, in viewof Theorem 1, a,Eand ¢ are coplanar vectors.
Example 28 Find lif thevectors
G=1i+3j+k,b=2i—j—kand &=\ +7 )+ 3k are coplanar.

Solution Since a,Eand ¢ are coplanar vectors, we have [5,5,5] =0, ie.,

1 3 1

2 -1 -1=0.

A7 3
= 1(-3+7)-3(6+)+1(14+1)=0
= 1=0.

Example 29 Show that the four points A, B, C and D with position vectors
4f +5]+k,—(j+k), 37 +9]+ 4k and 4(~i + j+ k), respectively are coplanar.

Solution Weknow that the four pointsA, B, Cand Darecoplanar if the threevectors
AB,AC and AD arecoplanar, i.e., if

A8, AC,AD |0
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Now AB=—(j+k)—(47 +5) +k)=—4i —6] —2k)
AC= (31 +9j+4k)— (4 +5]+k)=—i+4] +3k

and KDE4(—f+j+/€)—(4f+5}+l€)=—8§—}‘+3l€

4 —6 -2
Thus [A—B,E,A—D} 1 4 3|=0
8 -1 3

Hence A, B,Cand D are coplanar.

1
U
+
S
S
+
o
)
+
Y}
1
Il
~
Q)
+
Sy
N
~
~~
>
+
)
N
X
—~
al
+
U
N
N

=Gd.(bx¢)+ad.(bxad)+a.(@xad)+b.(bxT)+b.(bxa)+b.(¢ xa)
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Exercise 10.5

Find [ @b ¢ |if G=i-27+3kb=2i -3j+kandc=3i+ j—2k

(Ans. 24)

Showthat the vectors G=7 — 2/ + 3,b=—27 +3)—4kand ¢ =i -3+ 5k
are coplanar.

Find Lifthevectors { — j +k,37 + j+ 2kand 7+ Aj — 3k are coplanar,
(Ans. A= 15)

Let G=i + j+k,b=iand E=ci +c, +ck Then

(a) Ifc, =1andc, =2, findc, which makes @, and ¢ coplanar (Ans. c,=2)

(b) Ifc,=-1andc,=1, showthatno vale ofc, can make a,gand ¢ coplanar.
Showthat the fourpointswith positionvectors
47 +8) +12k,2i +4 j+ 6k,3i +5] + 4k and 5i +8 +5k are coplanar.

Find x such that the four points A (3, 2, 1) B (4, x, 5), C (4, 2, -2) and
D (6, 5, —1) are coplanar. (Ans. x=5)

Showthat the vectors i, b and ccoplanarif G+5, 5 +¢ and & +a arecoplanar.





